

TVC Direct Drive Air-Cooled Condenser

PRODUCT DATA & INSTALLATION

Four to Twelve Fan Motors

NOMENCLATURE TVC 096 A - T4 Generation TVC = Vertical Air Flow Condenser D = Latest generation (A, B, C older series) THC = Horizontal Air Flow Condenser Power Supply* S2 = 208-230/1/60 S6 = 200-220/1/50 Nominal Capacity (Tons - THR) -T3 = 208-230/3/60**T7** = 200-220/3/50 Rated at 25 °F (13.8 °C) TD, 30" fan, 850 RPM motor, T4 = 460/3/60T9 = 380-400/3/50 12 FPI, smooth tubing, 0° subcooling, sea level, 60 Hz f5 = 575/3/60Fan and Motor A = 30" fan with 850 RPM motor B = 30" fan with 550 RPM motor

* Subject to availability

C = 30" fan with 1140 RPM motor

PRODUCT FEATURES

Thermospan[™] Coil Design

Rugged Heavy-Gauge Motor Mounts

PRODUCT FEATURES

- New narrow width condenser design to suit shipment in containers.
- THERMOSPAN[™] coil design feature eliminates tube failure on tube sheets.
- Standard 850 RPM quiet low speed dual voltage (230/460) fan motors with male electrical plug, moisture slinger, and rainshield for complete weather protection.
- Optional 550 ultra low and 1140 RPM high speed motors available.

- Rugged heavy-gauge galvanized steel rail motor mounts/support.
- All fan sections individually baffled with full height partitions, and clean-out panels.
- Complete selection of electrical fan cycling and speed control options.
- Heavy-gauge galvanized steel cabinet construction assembled with zinc plated huck bolts supported on heavy-duty legs.
- Several optional fin material and spacing available.

STANDARD FEATURES

Standard features include:

- Thermospan™ Coil Design
- 850 RPM Motor c/w 30" Fan
- Fan Sections Individually Baffled with Full Height Partitions and Clean-out Panels
- Rugged Heavy-Gauge Galvanized Steel Rail Motor Mount
- Heavy-Gauge Galvanized Steel Cabinet
- Zinc Plated Huck Bolts

- Heavy Duty Legs
- 2-Fan Wide Units Have Two Equal Circuits
- Copper Tube, (3/8 O.D. on 1-6 Fan, 1/2 O.D. on 8-12 Fan) Aluminum Fin Condenser Coils
- Terminal Block
- Single Entering Electrical Service
- Control Circuit Voltage 230 V

OPTIONAL FEATURES (FACTORY MOUNTED)

Optional features include:

- Multiple Refrigeration Circuits
- Fan Cycling Ambient Thermostat/Fan Row with Contactors
- Fan Cycling Pressure Control/Fan Row w/Contactors
- Johnson P66 Variable Speed Fan Control
- Hoffman Three Phase Variable Speed Fan Control
- Individual Fan Motor Fusing
- Individual Ambient Thermostat or Pressure Control
- Non-Fused Disconnect

- Adjustable Flooded Head Pressure Control
- Extended Leg Kits (36" or 48") with Cross Bracing for Extra Rigidity
- Optional 2 HP 1140 RPM Motor c/w 30" Fan
- Optional 550 RPM Motor c/w 30" Fan
- Optional Fin Spacing
- Optional Fin Materials
- Optional Coil Coating
- Voltages Available for 60Hz or 50Hz

CAPACITY DATA - 850 RPM MODELS - R22, R404A & R507

(SINGLE ROW MODELS)

TVC	F				ECTION CAI		H (KW)		Max.	MBH
Model	Fans Long		<u>'</u>	12 FPI	NE DIFFERI	ENCE (ID)	10 FPI	8 FPL	No. of	@ 1° F TD Per Feed
Number		1°F (0.56°C)	10°F (5.56°C)	15°F (8.3°C)	20°F (11.1°C)	30°F (16.7°C)	1°F (0.56°C)	1°F (0.56°C)	Feeds	(12 FPI)
TVC056	4	26.94 (7.888)	269.4 (78.88)	404.1 (118.3)	538.8 (157.8)	808.2 (236.6)	25.06 (7.338)	22.90 (6.705)	21	1.2829
TVC063	4	30.28 (8.866)	302.8 (88.66)	454.2 (133.0)	605.6 (177.3)	908.4 (266.0)	28.77 (8.424)	26.65 (7.803)	28	1.0814
TVC068	4	33.00 (9.662)	330.0 (96.62)	495.0 (144.9)	660.0 (193.2)	990.0 (289. 9)	32.34 (9.469)	30.36 (8.889)	35	0.9429
TVC079	5	37.86 (11.09)	378.6 (110.9)	567.9 (166.3)	757.2 (221.7)	1136 (332.6)	35.96 (10.53)	33.31 (9.753)	28	1.3521
TVC085	5	41.25 (12.08)	412.5 (120.8)	618.8 (181.2)	825.0 (241.6)	1238 (362.3)	40.42 (11.83)	37.95 (11.11)	35	1.1786
TVC095	6	45.43 (13.30)	454.3 (133.0)	681.5 (199.5)	908.6 (266.Q)	1363 (399.1)	43.15 (12.63)	39.97 (11.70)	28	1.6225
TVC103	6	49.49 (14.49)	494.9 (144.9)	742.4 (217.4)	989.8 (2 8 9.8)	1485 (434.7)	48.50 (14.20)	45.53 (13.33)	35	1.4140

Correction Factors for Other refrigerants -Use R22 Values Multiplied By

R134a	R407A	R407B	R407C
0.94	0.97	0.97	1.00

- (1) Above capacity data based on 0°F subcooling and at sea level.
- (2) TD = Condensing temperature ambient temperature
- (3) Standard fin spacing is 12 FPI on all models.
 (4) For High Altitude applications apply the following correction factors: 0.94 for 2000 feet, 0.88 for 4000 feet and 0.81 for 6000 feet.
- (5) For 50Hz capacity multiply by 0.92.

CAPACITY DATA - 850 RPM MODELS - R22, R404A & R507 (DOUBLE ROW MODELS)

			TOTAL HE	AT OF REJ	ECTION CAI	PACITY ME	SH (KW)			
TVC	_				RE DIFFERI		(, (, (, , , , , , , , , , , , , , , ,		Max.	MBH
Model	Fans Long		<u>'</u>	12 FPI	KE DIFFEKI	ENCE (ID)	10 FPI	8/FPI	Nø. of	@ 1° F TD Per Feed
Number	Long	1°F	10°F	15°F	20°F	30°F	1°F	1°F	Feeds	(12 FPI)
		(0.56°C)	(5.56°C)	(8.3℃)	(11.1°C)	(16.7°C)	(0.56°C)	(0,56°C)		` /
TVC044	2	20.88	208.8	313.2	417.6	626.4	19.42	17.75	34	0.6141
1 7 0 0 4 4		(6.114)	(61.14)	(91.70)	(122.3)	(183.4)	(5.686)	(5.197)	34	0.0141
TVC049	2	23.50	235.0	352.5	470.0	705.0	22.33	20.68	45	0.5222
		(6.881)	(68.81)	(103.2)	(137.6)	(206.4)	(6.538)	(6.055)		
TVC054	2	25.84 (7.566)	258.4 (75.66)	387.6 (113.5)	516.8 (151.3)	775.2 (227.0)	25.32 (7.414)	23.77 (6.960)	56	0.4614
		27.53	275.3	413.0	550.6	825.9	26.15	24.22		
TVC057*	2	(8.061)	(80.61)	(120.9)	(161.2)	(241.8)	(7.657)	(7.092)	45	0.6118
T)/0004*		30.68	306.8	460.2	613.6	920.4	30.07	28.23	50	0.5.470
TVC064*	2	(8.983)	(89.83)	(134.7)	(179.7)	(269.5)	(8.804)	(8.266)	56	0.5479
TVC073	3	35.25	352.5	528.8	705.0	1058	33.49	31.02	68	0.5184
1 4 0 0 7 3	3	(10.32)	(103.2)	(154.8)	(206.4)	(309.6)	(9 .806)	(9.083)	00	0.5104
TVC081	3	38.76	387.6	581.4	775.2	1163	37.98	35.66	85	0.4560
		(11.35)	(113.5)	(170.2)	(227.0)	(340.5)	(11.12)	(10.44)		
TVC086*	3	41.29 (12.09)	412.9 (120.9)	619.4 (181.3) △	825.8 (241.8)	1239 (362.7)	39.23 (11.49)	36.34 (10.64)	68	0.6072
		46.02	460.2	690.3	920.4	1381	45.10	42.34		
TVC096*	3	(13.47)	(134.7)	(202.1)	(269.5)	(404.2)	(13.21)	(12.40)	85	0.5414
TVC440	4	53.89	538.9	808.4	1078	1617	50.12	45.80	40	4.0004
TVC112	4	(15.78)	(157.8)	(236.7)	(315.6)	(473.4)	(14.68)	(13.41)	42	1.2831
TVC126	4	60.57	605.7	908.6	1211	1817	57.54	53.30	56	1.0816
1 7 0 120		(17.73)	(177.3)	(266.0)	(354.7)	(532.0)	(16.85)	(15.61)	30	1.0010
TVC137	4	65.99	659.9	989.9	1320	1980	64.67	60.71	70	0.9427
		(19.32)	(193.2)	(289.8) 1136	(386.4)	(579.7)	(18.94)	(17.78)		
TVC158	5	75.71 (22.17)	757.1 (221.7)	(332.5)	1514 (443.4)	2271 (665.0)	71.92 (21.06)	66.62 (19.51)	56	1.3520
		82.49	824.9	1237	1650	2475	80.84	75.89		
TVC172	5	(24.15)	(241.5)	(362.3)	(483.1)	(724.6)	(23.67)	(22.22)	70	1.1784
TVC190	6	90.85	908.5	1363	1817	2726	86.31	79.95	56	1.6223
1 4 6 1 3 0	· ·	(26.60)	(266.0)	(399.0)	(532.0)	(798.0)	(25.27)	(23.41)	50	1.0223
TVC206	6	98.99	989.9	1485	1980	2970	97.01	91.07	70	1.4141
		(28.98)	(289.8)	(434.8)	(579.7)	(869.5)	(28.40)	(26.67)		

Correction Factors for Other refrigerants Use R22 Values Multiplied By

R134a	R407A	R4 07B	R407C
0.94	0.97	0.97	1.00

- Above capacity data based on 0°F subcooling and at sea level.
 TD = Condensing temperature ambient temperature
 Standard fin spacing is 12 FPI on all models.
 For High Altitude applications apply the following correction factors: 0.94 for 2000 feet, 0.88 for 4000 feet and 0.81 for 6000 feet.
- (5) For 50Hz capacity multiply by 0.92.
- (6) *Derate capacity by 8% on these models when operating on 208-230/1/60.

GENERAL SPECIFICATIONS - 850 RPM MODELS

(SINGLE ROW MODELS)

			R2	02				Pip	ing Co	nnections			
			Refrigerant		Air Flow	Sound	_	BLE FOR			ABLE FOR		Weights
TVC	Fans	Max.			Rate ⁽⁴⁾	Level (5)	TO 30º	F DESIGN	TD	TO 15°	F DESIGN	TD	(6)
MODEL NUMBER	Long	No. of Feeds	Normal (2)	90% FULL ⁽³⁾			Inlet	Outlet	Qty.	Inlet	Outlet	Qty.	
			lbs (kg)	lbs (kg)	CFM (<i>m</i> ³ / <i>h</i>)	dBA	INCHES (mm)	INCHES (mm)	Qty.	INCHES (mm)	INCHES (mm)	Qiy.	lbs (kg)
TVC056	4	21	26 (11.9)	172 (78.2)	35900 (60994)	61	2 5/8 (66)	2 1/8 (54)	7	2 1/8 (54)	1 3/8 (35)	1	1650 (750)
TVC063	4	28	33 (14.9)	225 (102.1)	35200 (59805)	61	2 5/8 (66)	2 1/8 (54)	1	2 1/8 (54)	1 3/8 (35)	1	1810 (823)
TVC068	4	35	39 (17.9)	277 (126.1)	34300 (58276)	61	2 5/8 (66)	2 1/8 (54)	1	2 1/8 (54)	1 5/8 (41)	1	1990 <i>(905)</i>
TVC079	5	28	39 (17.8)	277 (125.8)	44100 (74926)	62	2 5/8 (66)	2 1/8 (54)	1	2 1/8 (54)	1 5/8 (41)	1	2300 (1045)
TVC085	5	35	51 (23.0)	345 (157.0)	42900 (72887)	62	2 5/8 (66)	2 5/8 (66)	1	2 1/8 (54)	1 5/ 8 (41)	1	2530 (1150)
TVC095	6	28	53 (24.1)	339 (154.0)	52900 (89877)	63	3 1/8 (79)	3 1/8 (79)	1	2 5/8 (66)	2 1/8 (54)	1	2880 (1309)
TVC103	6	35	63 (28.5)	418 (189.8)	51500 (87499)	63	3 1/8 (79)	3 1/8 (79)	1	2 5/8 (66)	2 1/8 (54)	1	3150 <i>(1432)</i>

- (1) For R407A, R507 use R22 Charge x 0.87. For R407-C use R22 Charge x 0.97. For R134a and R502 use R22 Charge. For R12 use R22 Charge X 1.1.
- (2) Normal Charge is the refrigerant charge for warm ambient or summer operation. For low ambient or winter charge with flooded head pressure control and fan cycling see Page 47 and Page 48.
- (3) 90% FULL is the liquid refrigerant weight at 90% of internal volume and is for reference ONLY.
- (4) For 50Hz Fan Data use 60Hz CFM (m³/h) X 0.83.
- (5) Sound Pressure Level at approx. 32.8 ft. (ten metre) distance.
- (6) Less weight of refrigerant charge.
 - * Derate air flow rate by 12% on these models when operating on 208-230/1/60.

GENERAL SPECIFICATIONS - 850 RPM MODELS

(DOUBLE ROW MODELS)

			R2	20				Piping	Con	nections			
TVC	Fans	Max.	Refrigerant		Air Flow Rate ⁽⁴⁾	Sound Level (5)		BLE FOR 16º F DESIGN T			BLE FOR F DESIGN		Weights
MODEL NUMBER	Long	No. of Feeds	Normal (2)	90% FULL ⁽³⁾	Rute	Lovei	Inlet	Outlet	Qtv.	Inlet	Outlet	Qty.	
			lbs (kg)	lbs (kg)	CFM (<i>m</i> ³ / <i>h</i>)	dBA	INCHES (mm)	INCHES (mm)	ity.	(mm)	INCHES (mm)	Qty.	lbs (kg)
TVC044	2	34	16 (7.2)	98 (44.5)	29900 (50800)	61	2 1/8 (54)	1 3/8 (35)	2	1 3/8 (35)	1 1/8 (28)	2	1070 <i>(486)</i>
TVC049	2	45	19 (8.7)	125 (57.0)	28800 (48931)	61	2 1/8 (54)	1 3/8 (35)	2	1 3/8 (35)	1 1/8 (28)	2	1200 <i>(545)</i>
TVC054	2	56	23 (10.3)	153 (69.5)	27700 (47062)	61	2.1/8 (54)	1 3/8 (35)	2	1 3/8 (35)	1 1/8 (28)	2	1330 (605)
TVC057*	2	45	25 (11.3)	157 (71.3)	35300 (59975)	61	2 1/8 (54)	1 5/8 (41)	2	1 3/8 (35)	1 1/8 (28)	2	1400 (636)
TVC064*	2	56	29 (13.3)	192 (87.2)	34300 (58276)	61	2 1/8 (54)	1 5/8 (41)	2	1 5/8 (41)	1 1/8 (28)	2	1590 (723)
TVC073	3	68	28 (12.7)	181 (82.1)	43200 (73397)	63	2 5/8 (66)	1 5/8 (41)	2	2 1/8 (54)	1 3/8 (35)	2	1720 (782)
TVC081	3	85	33 (15.2)	227 (103.4)	41600 (70678)	63	2 5/8 (66)	1 5/8 (41)	2	2 1/8 (54)	1 3/8 (35)	2	1920 (873)
TVC086*	3	68	34 (15.4)	231 (104.9)	53000 (90047)	63	2/5/8 (66)	1 5/8 (41)	2	2 1/8 (54)	1 3/8 (35)	2	2060 (936)
TVC096*	3	85	40 (18.3)	283 (128.6)	51500 (87499)	63	2 5/8 (66)	1 5/8 (41)	2	2 1/8 (54)	1 3/8 (35)	2	2340 (1064)
TVC112	4	42	52 (23.8)	344 (156.3)	71800 (121988)	64	2 5/8 (66)	2 1/8 (54)	2	2 1/8 (54)	1 3/8 (35)	2	2780 (1264)
TVC126	4	56	65 (29.7)	449 (204.3)	70500 (119780)	64	2 5/8 (66)	2 1/8 (54)	2	2 1/8 (54)	1 3/8 (35)	2	3100 (1409)
TVC137	4	70	79 (35.7)	555 (252.2)	68600 (116551)	64	2 5/8 (66)	2 1/8 (54)	2	2 1/8 (54)	1 5/8 (41)	2	3460 (1573)
TVC158	5	56	78 (35.6)	553 (251.6)	88100 (149682)	65	2 5/8 (66)	2 1/8 (54)	2	2 1/8 (54)	1 5/8 (41)	2	4000 (1818)
TVC172	5	70	101 (46.0)	691 (314.0)	85800 (145774)	65	2 5/8 (66)	2 5/8 (66)	2	2 1/8 (54)	1 5/8 (41)	2	4460 (2027)
TVC190	6	56	106 (48.1)	678 (308.1)	106000 (180094)	66	3 1/8 (79)	3 1/8 (79)	2	2 5/8 (66)	2 1/8 (54)	2	4850 (2205)
TVC206	6	70	126 (57.1)	835 (379.7)	103000 (174997)	66	3 1/8 (79)	3 1/8 (79)	2	2 5/8 (66)	2 1/8 (54)	2	5400 (2 <i>4</i> 55)

- (1) For R407A, R507 use R22 Charge x 0.87. For R407-C use R22 Charge x 0.97. For R134a and R502 use R22 Charge. For R12 use R22 Charge X 1.1.
- (2) Normal Charge is the refrigerant charge for warm ambient or summer operation. For low ambient or winter charge with flooded head pressure control and fan cycling see Page 47 and Page 48.
- (3) 90% FULL is the liquid refrigerant weight at 90% of internal volume and is for reference ONLY.
- (4) For 50Hz Fan Data use 60Hz CFM (m³/h) X 0.83.
- (5) Sound Pressure Level at approx. 32.8 ft. (ten metre) distance.
- (6) Less weight of refrigerant charge.
 - * Derate air flow rate by 12% on these models when operating on 208-230/1/60.

ELECTRICAL DATA - 850 RPM MODELS

NO. OF	20	08-230/1/60)	20	08-230/3/60)		460/3/60			57 5/3/60	
FAN MOTORS	TOTAL FLA	MCA	МОР	TOTAL FLA	MCA	МОР	TOTAL FLA	MCA	МОР	TOTAL FLA	MCA	MOP
4	13.6	16.0	20	19.6	20.8	25	8.8	9.4	15	6.8	7.2	15
5	N/A	N/A	N/A	24.5	25.7	30	11.0	11.6	15	8.5	8.9	15
6	20.4	21.3	25	29.4	30.6	35	13.2	16.0	20	10.2	10.6	15
8	N/A	N/A	N/A	39.2	40.4	50	17.6	21.0	25	13.6	16.0	20
10	N/A	N/A	N/A	49.0	50.2	60	22.0	26.0	30	17.0	21.0	25
12	N/A	N/A	N/A	58.8	61.0	70	26.4	31.0	35	20.4	26.0	30

M.C.A. = Minimum Circuit Ampacity (AMPS) M.O.P. = Maximum Overcurrent Protection (AMPS) N/A = Not Available

ELECTRICAL DATA - 700 RPM MODELS

50Hz

NO. OF		200-220/1/50			200-220/3/50			380-400/3/50	
FAN MOTORS	TOTAL FLA	MCA 4	МОР	TOTAL FLA	MCA	МОР	TOTAL FLA	MCA	MOP
4	14.4	15.3	20	15.2	16.2	20	6.8	7.2	15
5	N/A	N/A	N/A	19.0	21.0	25	8.5	8.9	15
6	21.6	25.1	30	22.8	26.0	30	10.2	10.6	15
8	N/A	N/A	N/A	30.4	36.0	40	13.6	16.0	20
10	N/A	N/A	N/A	38.0	41.0	50	17.0	21.0	25
12	N/A	N/A	N/A	45.6	51.0	60	20.4	26.0	30

M.C.A. = Minimum Circuit Ampacity (AMPS)
M.O.P. = Maximum Overcurrent Protection (AMPS)
N/A = Not Available

DIMENSIONAL DATA - SINGLE ROW TVC MODELS

DIMENSIONS - Inches (mm)

TVC MODEL	FAN	L	-	N	/11	M	12	N	13	M	4
NUMBER	LONG	INCHES	mm	INCHES	mm	INCHES	mm	INCHES	mm	INCHES	mm
TVC056	4	242 1/2	6160	102 1/4	2597	115 1/4	2927	235 1/2	5982	-	-
TVC063	4	242 1/2	6160	102 1/4	2597	115 1/4	2927	235 1/2	5982	-	1
TVC068	4	242 1/2	6160	102 1/4	2597	115 1/4	29 27	235 1/2	5982	-	ı
TVC079	5	302 1/2	7684	102 1/4	2597	54	1372	115 1/4	2927	295 1/2	7506
TVC085	5	302 1/2	7684	102 1/4	2597	54	1372	115 1/4	2927	295 1/2	7506
TVC095	6	362 1/2	9208	102 1/4	2597	114	2896	115 1/4	2927	355 1/2	9030
TVC103	6	362 1/2	9208	102 1/4	2 597	114	2896	115 1/4	2927	355 1/2	9030

DIMENSIONAL DATA - DOUBLE ROW TVC MODELS

DIMENSIONS - Inches (mm)

TVC MODEL	FAN	L		M		Ma	2	M3	3	M 4	
NUMBER	LONG	INCHES	mm	INCHES	mm	INCHES	mm	INCHES	mm	INCHES	mm
TVC044	2	96 1/2	2451	77 1/2	1969	89 1/2	2273	-	-	-	-
TVC049	2	96 1/2	2451	77 1/2	1969	89 1/2	2273	-	1	•	-
TVC054	2	96 1/2	2451	77 1/2	1969	89 1/2	2273	-	-	-	-
TVC057	2	122 1/2	3112	103 1/2	2629	115 1/2	2934	-	-	-	-
TVC064	2	122 1/2	3112	103 1/2	2629	115 1/2	2934	-	-	-	-
TVC073	3	143 1/2	3645	124 1/2	3162	136 1/2	3467	-	-	-	-
TVC081	3	143 1/2	3645	124 1/2	3162	136 1/2	3467	-	-	-	-
TVC086	3	182 1/2	4636	163 1/2	4153	175 1/2	4458	-	-	-	-
TVC096	3	182 1/2	4636	163 1/2	4153	175 1/2	4458	-	-	-	-
TVC112	4	242 1/2	6160	102 1/4	2597	115 1/4	2927	235 1/2	5982	-	-
TVC126	4	242 1/2	6160	102 1/4	2597	115 1/4	2927	235 1/2	5982	-	-
TVC137	4	242 1/2	6160	102 1/4	2597	115 1/4	2927	235 1/2	5982	-	-
TVC158	5	302 1/2	7684	102 1/4	2597	54	1372	115 1/4	2927	295 1/2	7506
TVC172	5	302 1/2	7684	102 1/4	2597	54	1372	115 1/4	2927	295 1/2	7506
TVC190	6	362 1/2	9208	102 1/4	2597	114	2896	115 1/4	2927	355 1/2	9030
TVC206	6	362 1/2	9208	102 1/4	2597	114	2896	115 1/4	2927	355 1/2	9030

(SINGLE ROW MODELS - SINGLE PHASE UNIT)

(SINGLE ROW MODELS - THREE PHASE UNIT)

(DOUBLE ROW MODELS - THREE PHASE UNIT)

(DOUBLE ROW MODELS WITH SINGLE PHASE FAN SPEED CONTROL (P66)

(DOUBLE ROW MODELS WITH THREE PHASE HOFFMAN FAN SPEED CONTROL)

CAPACITY DATA - 550 RPM MODELS - R22, R404A & R507

(SINGLE ROW MODELS)

			TOTAL HE	AT OF REJ	ECTION CAI	PACITY MB	H (KW)			МВН
TVC	Fans		Т	EMPERATU	RE DIFFERI	ENCE (TD)			Max.	@ 1° F TD
Model Number	Long			12 FPI			10 FPI	8 FPI	No. of Feeds	Per Feed
Humber		1°F	10°F	15°F	20°F	30°F	1°F	1°F	recus	(12 FPI)
		(0.56°C)	(5.56°C)	(8.3°C)	(11.1°C)	(16.7°C)	(0.56℃)	(0.56°C)		
TVC056	4	20.21	202.1	303.2	404.2	606.3	18.79	17.18	14	1.4436
110000		(5.917)	(59.17)	(88.76)	(118.3)	(177.5)	(5.502)	(5.030)	17	1.4450
TVC063	4	22.53	225.3	338.0	450.6	675.9	21.40	19.83	18	1.2517
1 4 0 0 0 0	1	(6.597)	(65.97)	(98.95)	(131.9)	(197.9)	(6.266)	(5.806)	10	1.2317
TVC068	4	23.76	237.6	356.4	475.2	712.8	23.28	21.86	23	1.0330
1 4 6 0 0 0	4	(6.957)	(69.57)	(104.4)	(139.1)	(208.7)	(6.816)	(6.401)	23	1.0330
TVC079	5	28.01	280.1	420.2	560.2	840.3	26.61	24.65	28	1.0004
1 4 6 0 7 9] 3	(8.201)	(82.01)	(123.0)	(164.0)	(246.0)	(7.791)	(7.218)	20	1.0004
TVC085	5	29.70	297.0	445.5	594.0	891.0	29.10	27.32	35	0.8486
1 4 6 0 0 3	3	(8.696)	(86.96)	(130.4)	(173.9)	(260.9)	(8.520)	(7.999)	33	0.0460
TVC095	6	33.62	336.2	504.3	672.4	1009	31,93	29.58	28	1.2007
1 4 6 0 9 5	0	(9.844)	(98.44)	(147.7)	(196.9)	(295.3)	(9.349)	(8.661)	20	1.2007
TVC103	6	35.64	356.4	534.6	712.8	1069	34.92	32.78	35	1.0183
1 4 5 103	0	(10.44)	(104.4)	(156.5)	(208.7)	(313.1)	(10.22)	(9.598)	35	1.0163

Correction Factors for Other refrigerants - Use R22 Values Multiplied By

R134a	R407A	R407B	R407C
0.94	0.97	0.97	1.00

- (1) Above capacity data based on 0°F subcooling and at sea level.
- (2) TD = Condensing temperature ambient temperature
- (3) Standard fin spacing is 12 FPI.
- (4) For High Altitude applications apply the following correction factors: 0.94 for 2000 feet, 0.88 for 4000 feet and 0.81 for 6000 feet.
- (5) For 50Hz capacity multiply by 0.92.

CAPACITY DATA - 550 RPM MODELS - R22, R404A & R507

(DOUBLE ROW MODELS)

			TOTAL HE		MBH					
TVC	Fans		T	EMPERATU	RE DIFFER	ENCE (TD)			Max.	@ 1° F TD
Model Number	Long			12 FPI			10 FPI	8 FPI	Nø. of Feeds	Per Feed
Number		1°F (0.56°C)	10°F (5.56°C)	15°F (8.3°C)	20°F (11.1°C)	30°F (16.7°C)	1°F (0.56°C)	1°F (0,56°C)	d ccus	(12 FPI)
TVC044	2	15.81 (4.629)	158.1 (46.29)	237.2 (69.44)	316.2 (92.58)	474.3 (138.9)	14.70 (4.304)	13.44 (3.935)	34	0.4650
TVC049	2	17.16 (5.024)	171.6 (50.24)	257.4 (75.37)	343.2 (100.5)	514.8 (150.7)	16.30 (4.773)	15.10 (4.421)	34	0.5047
TVC054	2	18.35 (5.373)	183.5 (53.73)	275.3 (80.59)	367.0 (107.5)	550.5 (161.2)	17.98 (5.265)	16.88 (4.942)	34	0.5397
TVC057	2	20.37 (5.964)	203.7 (59.64)	305.6 (89.47)	407.4 (119.3)	611.1 (178.9)	19.35 (5.666)	17.93 (5.250)	34	0.5991
TVC064	2	22.00 (6.442)	220.0 (64.42)	330.0 (96.62)	440.0 (128.8)	660.0 (193.2)	21.49 (6.292)	20.24 (5.92 6)	42	0.5238
TVC073	3	25.73 (7.534)	257.3 (75.34)	386.0 (113.0)	514.6 (150.7)	771.9 (226.0)	24.45 (7.159)	22.64 (6.629)	45	0.5718
TVC081	3	27.52 (8.058)	275.2 (80.58)	412.8 (120.9)	550.4 (161.2)	825.6 (241.7)	26.97 (7.897)	25.32 (7.414)	56	0.4914
TVC086	3	30.56 (8.948)	305.6 (89.48)	458.4 (134.2)	611.2 (179.0)	916.8 (268.4)	29.03 (8.500)	26.89 (7.873)	68	0.4494
TVC096	3	33.00 (9.662)	330.0 (96.62)	495.0 (144.9)	660.0 (193.2)	990.0 (289.9)	32.24 (9.440)	30.36 (8.889)	85	0.3882
TVC112	4	40.42 (11.83)	404.2 (118.3)	606.3 (177.5)	808.4 (236.7)	1213 (355.0)	37.59 (11.01)	34.35 (10.06)	28	1.4436
TVC126	4	44.82 (13.12)	448.2 (131.2)	672.3 (196.8)	896.4 (262.5)	1345 (393.7)	42.58 (12.47)	39.44 (11.55)	37	1.2114
TVC137	4	47.51 (13.91)	475.1 (139.1)	712.7 (208.7)	950.2 (278.2)	1425 (417.3)	46.56 (13.63)	43.71 (12.80)	46	1.0328
TVC158	5	56.03 (16.41)	560.3 (164.1)	840.5 (246.1)	1121 (328.1)	1681 (492.2)	53.22 (15.58)	49.30 (14.44)	56	1.0005
TVC172	5	59.39 (17.39)	593.9 (173.9)	890.9 (260.8)	1188 (347.8)	1782 (521.7)	58.20 (17.04)	54.64 (16.00)	70	0.8484
TVC190	6	67.23 (19.68)	672.3 (196.8)	1008 (295.3)	1345 (393.7)	2017 (590.5)	63.87 (18.70)	59.16 (17.32)	56	1.2005
TVC206	6	71.27 (20.87)	712.7 (208.7)	1069 (313.0)	1425 (417.4)	2138 (626.0)	69.85 (20.45)	65.57 (19.20)	70	1.0181

Correction Factors for Other refrigerants - Use R22 Values Multiplied By

R134a	R407A	R407B	R407C
0.94	0.97	0.97	1.00

- (1) Above capacity data based on 0°F subcooling and at sea level.
- (2) TD = Condensing temperature ambient temperature
 (3) Standard fin spacing is 12 FPI.
- (4) For High Altitude applications apply the following correction factors: 0.94 for 2000 feet, 0.88 for 4000 feet and 0.81 for 6000 feet.
- (5) For 50Hz capacity multiply by 0.92.

GENERAL SPECIFICATIONS - 550 RPM MODELS - R22

(SINGLE ROW MODELS)

			P	22			Pipi	ing Cor	nections			
		l		t Charge (1)	Air Flow	ı	CABLE FOR			ICABLE FO		NA/ - ! - ! - / (5)
TVC	Fans	Max.			Rate ⁽⁴⁾	16º F TO 3	0° F DESIG	IN TD	10° F TO	15º F DESIG	SN TD	Weights (5)
MODEL NUMBER	Long	No. of Feeds	Normal (2)	90% FULL ⁽³⁾	rtuto	Inlet	Outlet	Qty.	Inlet	Outlet	Qty.	
			lbs (kg)	lbs (kg)	CFM (m³/h)	INCHES (mm)	INCHES (mm)	Gty.	INCHES (mm)	INCHES (mm)	Qiy.	lbs (kg)
TVC056	4	14	26 (11.9)	172 (78.2)	23300 (39587)	2 1/8 (54)	1 5/8 (41)	1	2 1/8 (54)	1 3/8 (35)	1	1650 (750)
TVC063	4	18	33 (14.9)	225 (102.1)	22900 (38907)	2 5/8 (66)	1 5/8 (41)	1	2 1/8 (54)	1 3/8 (35)	1	1810 (823)
TVC068	4	23	39 (17.9)	277 (126.1)	22300 (37888)	2 5/8 (66)	1 5/8 (41)	1	2 1/8 (54)	1 3/8 (35)	1	1990 (905)
TVC079	5	28	39 (17.8)	277 (125.8)	28700 (48761)	2 5/8 (66)	2 1/8 (54)	1	2 1/8 (54)	1 5/8 (41)	1	2300 (1045)
TVC085	5	35	51 (23.0)	345 (157.0)	27900 (47402)	2 5/8 (66)	2 1/8 (54)	1	2 1/8 (54)	1 5/8 (41)	1	2530 (1150)
TVC095	6	28	53 (24.1)	339 (154.0)	34400 (58446)	3 1/8 (79)	2 1/8 (54)	1	2 1/8 (54)	1 5/8 (41)	1	2880 (1309)
TVC103	6	35	63 (28.5)	418 (189.8)	33500 (56917)	3 1/8 (79)	2 5/8 (66)	1	2 5/8 (66)	1 5/8 (41)	1	3150 (1432)

- (1) For R407A, R507 use R22 Charge x 0.87. For R407-C use R22 Charge x 0.97. For R134a and R502 use R22 Charge. For R12 use R22 Charge x 1.1.
- (2) Normal Charge is the refrigerant charge for warm ambient or summer operation. For low ambient or winter charge with flooded head pressure control and fan cycling see Page 47 and Page 48.
 (3) 90% FULL is the liquid refrigerant weight at 90% of internal volume and is for reference ONLY.
- (4) For 50Hz Fan data use 60Hz CFM (m³/h) x 0.83.capacity multiply by 0.92.
- (5) Less weight of refrigerant charge.

GENERAL SPECIFICATIONS - 550 RPM MODELS - R22

(DOUBLE ROW MODELS)

				22			Pipi	ng Cor	nections			
TVC	Fans	Max.		t Charge (1)	Air Flow Rate ⁽⁴⁾	1	CABLE FOR 0° F DESIG			ICABLE FO		Weights (5)
MODEL NUMBER	Long	No. of Feeds	Normal (2)	90% FULL ⁽³⁾	rtuio	Inlet	Outlet	Qty.	Inlet	Outlet	Qty.	
			lbs (kg)	lbs (kg)	CFM (<i>m</i> ³ / <i>h</i>)	INCHES (mm)	INCHES (mm)	Gly.	INCHES (mm)	INCHES (mm)	Qty.	lbs (kg)
TVC044	2	34	16 (7.2)	98 (44.5)	19400 (32961)	1 5/8 (41)	1 1/8 (28)	2	1 3/8 (35)	7/8 (22)	2	1070 (486)
TVC049	2	34	19 (8.7)	125 (57.0)	18700 (31771)	1 5/8 (41)	1 1/8 (28)	2	1 3/8 (35)	7/8 (22)	2	1200 (545)
TVC054	2	34	23 (10.3)	153 (69.5)	18000 (30582)	1 5/8 (41)	1 1/8 (28)	2	1 3/8 (35)	7/8 (22)	2	1330 (605)
TVC057	2	34	25 (11.3)	157 (71.3)	22900 (38907)	1 5/8 (41)	1 1/8 (28)	2	1 3/8 (35)	1 1/8 (28)	2	1400 (636)
TVC064	2	42	29 (13.3)	192 (87.2)	22300 (37888)	2 1/8 (54)	1 3/8 (35)	2	1 3/8 (35)	1 1/8 (28)	2	1590 (723)
TVC073	3	45	28 (12.7)	181 (82.1)	28100 (47742)	2 1/8 (54)	1 3/8 (35)	2	1 5/8 (41)	1 1/8 (28)	2	1720 (782)
TVC081	3	56	33 (15.2)	227 (103.4)	27000 (45873)	2 1/8 (54)	1 3/8 (35)	2	1 5/8 (41)	1 1/8 (28)	2	1920 (873)
TVC086	3	68	34 (15.4)	231 (104.9)	34500 (58616)	2 1/8 (54)	1 3/8 (35)	2	1 5/8 (41)	1 1/8 (28)	2	2060 (936)
TVC096	3	85	40 (18.3)	283 (128.6)	33500 (56917)	2 1/8 (54)	1 5/8 (41)	2	1 5/8 (41)	1 1/8 (28)	2	2340 (1064)
TVC112	4	28	52 (23.8)	344 (156.3)	46700 (79343)	2 1/8 (54)	1 5/8 (41)	2	2 1/8 (54)	1 3/8 (35)	2	2780 (1264)
TVC126	4	37	65 (29.7)	449 (204.3)	45800 (77814)	2 5/8 (66)	1 5/8 (41)	2	2 1/8 (54)	1 3/8 (35)	2	3100 (1409)
TVC137	4	46	79 (35.7)	555 (252.2)	44600 (75775)	2 5/8 (66)	1 5/8 (41)	2	2 1/8 (54)	1 3/8 (35)	2	3460 (1573)
TVC158	5	56	78 (35.6)	553 (251.6)	57300 (97353)	2 5/8 (66)	2 1/8 (54)	2	2 1/8 (54)	1 5/8 (41)	2	4000 (1818)
TVC172	5	70	101 (46.0)	691 (314.0)	55800 (94804)	2 5/8 (66)	2 1/8 (54)	2	2 1/8 (54)	1 5/8 (41)	2	4460 (2027)
TVC190	6	56	106 (48.1)	678 (308.1)	68900 (117061)	3 1/8 (79)	2 1/8 (54)	2	2 1/8 (54)	1 5/8 (41)	2	4850 (2205)
TVC206	6	70	126 (57.1)	835 (379.7)	67000 (113833)	3 1/8 (79)	2 5/8 (66)	2	2 5/8 (66)	1 5/8 (41)	2	5400 (2 <i>4</i> 55)

- (1) For R407A, R507 use R22 Charge x 0.87. For R407-C use R22 Charge x 0.97. For R134a and R502 use R22 Charge. For R12 use R22 Charge x 1.1.
- (2) Normal Charge is the refrigerant charge for warm ambient or summer operation. For low ambient or winter charge with flooded head pressure control and fan cycling see Page 47 and Page 48.

 (3) 90% FULL is the liquid refrigerant weight at 90% of internal volume and is for reference ONLY.
- (4) For 50Hz Fan data use 60Hz CFM (m³/h) x 0.83.capacity multiply by 0.92.
- (5) Less weight of refrigerant charge.

ELECTRICAL DATA - 550 RPM MODELS

60Hz

NO.	2	08-230/3/60			460/3/60		575/3/60			
OF FANS	TOTAL FLA	MCA	МОР	TOTAL FLA	MCA	МОР	TOTAL FLA	MCA	МОР	
4	11.2	11.9	15	5.2	5.5	15	4.4	4.7	15	
5	14.0	16.0	20	6.5	6.8	15	5.5	5.8	15	
6	16.8	21.0	25	7.8	8.1	15	6.6	6.9	15	
8	22.4	26.0	30	10.4	10.7	15	8.8	9.1	15	
10	28.0	31.0	35	13.0	15.1	20	11.0	11.3	15	
12	33.6	41.0	45	15.6	15.9	20	13.2	16.0	20	

M.C.A. = Minimum Circuit Ampacity (AMPS)

M.O.P. = Maximum Overcurrent Protection (AMPS)

ELECTRICAL DATA - 450 RPM MODELS

50Hz

NO.		200-220/3/50			380-400/3/50	
OF FANS	TOTAL FLA	MCA	МОР	TOTAL FLA	MCA	МОР
4	8.7	9.3	15	4.0	4.3	15
5	10.9	11.4	15	5.0	5.3	15
6	13.1	16.0	20	6.0	6.3	15
8	17.4	21.0	25	8.0	8.3	15
10	21.8	26.0	30	10.0	10.3	15
12	26.2	31,0	35	12.0	12.3	15

M.C.A. = Minimum Circuit Ampacity (AMPS)

M.O.P. = Maximum Overcurrent Protection (AMPS)

CAPACITY DATA - 1140 RPM MODELS - R22, R404A & R507

(SINGLE ROW MODELS)

			TOTAL HE	AT OF REJ	ECTION CAI	PACITY MB	BH (KW)			МВН
TVC	Fans		Т	EMPERATU	RE DIFFER	ENCE (TD)			Max.	@ 1° F TD
Model Number	Long			12 FPI			10 FPI	8/FPI	No. of Feeds	Per Feed
Rumber		1°F (0.56°C)	10°F (5.56°C)	15°F (8.3°C)	20°F (11.1°C)	30°F (16.7°C)	1°F (0.56°C)	1°F (0,56°C)	W CCCC	(12 FPI)
TVC056	4	31.79 (9.308)	317.9 (93.08)	476.9 (139.6)	635.8 (186.2)	953.7 (279.2)	29.57 (8.658)	27.02 (7.911)	21	1.5138
TVC063	4	36.64 (10.73)	366.4 (107.3)	549.6 (160.9)	732.8 (214.6)	1099 (321.8)	34.81 (10.19)	32.25 (9.443)	28	1.3086
TVC068	4	40.92 (11.98)	409.2 (119.8)	613.8 (179.7)	818.4 (239.6)	1228 (359.4)	40.10 (11.74)	37.64 (11.02)	35	1.1691
TVC079	5	45.80 (13.41)	458.0 (134.1)	687.0 (201.2)	916.0 (268.2)	1374 (402.3)	43.51 (12.74)	40.31 (11.80)	28	1.6357
TVC085	5	51.14 (14.97)	511.4 (149.7)	767.1 (224.6)	1023 (299.5)	1534 (449.2)	50.12 (14.68)	47.05 (13.78)	35	1.4611
TVC095	6	54.97 (16.10)	549.7 (161.0)	824.6 (241.4)	1099 (321.9)	1649 (482.9)	52.22 (15.29)	48.37 (14.16)	28	1.9632
TVC103	6	61.37 (17.97)	613.7 (179.7)	920.6 (269.5)	1227 (359.4)	1841 (539.1)	60.15 (17.61)	56.46 (16.53)	35	1.7534

Correction Factors for Other refrigerants - Use R22 Values Multiplied By

R134a	R407A	R407B	R407C
0.94	0.97	0.97	1.00

- (1) Above capacity data based on 0°F subcooling and at sea level.
- (2) TD = Condensing temperature ambient temperature
- (3) Standard fin spacing is 12 FPI.
- (4) For High Altitude applications apply the following correction factors: 0.94 for 2000 feet, 0.88 for 4000 feet and 0.81 for 6000 feet.
- (5) For 50Hz capacity multiply by 0.92.

CAPACITY DATA - 1140 RPM MODELS - R22, R404A & R507

(DOUBLE ROW MODELS)

			TOTAL HE	AT OF REJ	ECTION CAI	PACITY MB	H (KW)			MBH
TVC	Fans		Т	EMPERATU	RE DIFFER	ENCE (TD)			Max.	@ 1° F TD
Model Number	Long			12 FPI			10 FPI	8 FPI	No. of Feeds	Per Feed
Number		1°F (0.56°C)	10°F (5.56°C)	15°F (8.3°C)	20°F (11.1°C)	30°F (16.7°C)	1°F (0.56℃)	1°F (0.56°C)	reeus	(12 FPI)
TVC044	2	25.06 (7.338)	250.6 (73.38)	375.9 (110.1)	501.2 (146.8)	751.8 (220.1)	23.30 (6.822)	21.30 (6.237)	34	0.7371
TVC049	2	28.67 (8.395)	286.7 (83.95)	430.1 (125.9)	573.4 (167.9)	860.1 (251.8)	27.24 (7.976)	25.23 (7.387)	45	0.6371
TVC054	2	32.04 (9.381)	320.4 (93.81)	480.6 (140.7)	640.8 (187.6)	961.2 (281. 4)	31.40 (9.194)	29.48 (8.632)	56	0.5721
TVC057	2	33.41 (9.782)	334.1 (97.82)	501.2 (146.7)	668.2 (195.6)	1002 (293.5)	31.74 (9.293)	29.40 (8.608)	45	0.7424
TVC064	2	38.04 (11.14)	380.4 (111.4)	570.6 (167.1)	760.8 (222.8)	1141 (334.1)	37.28 (10.92)	35.00 (10.25)	56	0.6793
TVC073	3	43.01 (12.59)	430.1 (125.9)	645.2 (188.9)	860.2 (251.9)	1290 (377.8)	40.85 (11.96)	37.84 (11.08)	68	0.6325
TVC081	3	48.06 (14.07)	480.6 (140.7)	720.9 (211.1)	9 61.2 (281.4)	1442 (422.2)	47.10 (13.79)	44.22 (12.95)	85	0.5654
TVC086	3	50.11 (14.67)	501.1 (146.7)	751.7 (220.1)	1002 (293.4)	1503 (440.2)	47.61 (13.94)	44.10 (12.91)	68	0.7369
TVC096	3	57.06 (16.71)	570.6 (167.1)	855.9 (250.6)	1141 (334.1)	1712 (501.2)	55.92 (16.37)	52.50 (15.37)	85	0.6713
TVC112	4	63.59 (18.62)	635.9 (186.2)	953.9 (279.3)	1272 (372.4)	1908 (558.6)	59.14 (17.32)	54.05 (15.83)	42	1.5140
TVC126	4	73.29 (21.46)	732.9 (214.6)	1099 (321.9)	1466 (429.2)	2199 (643.8)	69.62 (20.38)	64.49 (18.88)	56	1.3088
TVC137	4	81.83 (23.96)	818.3 (239, 6)	1227 (359.4)	1637 (479.2)	2455 (718.8)	80. 19 (23.48)	75.28 (22.04)	70	1.1690
TVC158	5	91.61 (26.82)	916.1 (268.2)	1374 (402.4)	1832 (536.5)	2748 (804.7)	87.03 (25.48)	80.62 (23.61)	56	1.6359
TVC172	5	102.3 (29.95)	1023 (299.5)	1535 (449,3)	2046 (599.1)	3069 (898.6)	100.3 (29.37)	94.12 (27.56)	70	1.4614
TVC190	6	109.9 (32.18)	1099 (321.8)	1649 (482.7)	2198 (643.6)	3297 (965.4)	104.4 (30.57)	96.71 (28.32)	56	1.9625
TVC206	6	122.7 (35.93)	1227 (359.3)	1841 (538.9)	2454 (718.5)	3681 (1078)	120.3 (35.22)	112.9 (33.06)	70	1.7529

Correction Factors for Other refrigerants - Use R22 Values Multiplied By

R134a	R407A	R407B	R407C
0.94	0.97	0.97	1.00

- (1) Above capacity data based on 0°F subcooling and at sea level.
- (2) TD = Condensing temperature ambient temperature
- (3) Standard fin spacing is 12 FPI.
- (4) For High Altitude applications apply the following correction factors: 0.94 for 2000 feet, 0.88 for 4000 feet and 0.81 for 6000 feet.
- (5) For 50Hz capacity multiply by 0.92.

GENERAL SPECIFICATIONS - 1140 RPM MODELS

(SINGLE ROW MODELS)

			R	22			Pipi	ng Cor	nections			
TVC	Fans	Max.	I	nt Charge (1)	Air Flow Rate ⁽⁴⁾	1	CABLE FOR 0º F DESIG			ICABLE FO 15º F DESIG		Weights (5)
MODEL NUMBER	Long	No. of Feeds	Normal ⁽²⁾	90% FULL ⁽³⁾		Inlet	Outlet	Oty	Inlet	Outlet	Ott	
			lbs (kg)	lbs (kg)	CFM (m³/h)	INCHES (mm)	INCHES (mm)	Qty.	INCHES (mm)	INCHES (mm)	Qty.	lbs (kg)
TVC056	4	21	26 (11.9)	172 (78.2)	48100 (81722)	2 5/8 (66)	2 1/8 (54)	1	2 1/8 (54)	1 5/8 (41)	1	1650 (750)
TVC063	4	28	33 (14.9)	225 (102.1)	47200 (80193)	3 1/8 (79)	2 1/8 (54)	1	2 5/8 (66)	1 5/8 (41)	1	1810 (823)
TVC068	4	35	39 (17.9)	277 (126.1)	46000 (78154)	3 1/8 (79)	2 5/8 (66)	1	2 5/8 (66)	1 5/8 (41)	1	1990 <i>(905)</i>
TVC079	5	28	39 (17.8)	277 (125.8)	59100 (100411)	3 1/8 (79)	2 5/8 (66)	1	2 5/8 (66)	2 1/8 (54)	1	2300 (1045)
TVC085	5	35	51 (23.0)	345 (157.0)	57500 (97693)	3 1/8 (79)	2 5/8 (66)	1	2.5/8 (66)	2 1/8 (54)	1	2530 (1150)
TVC095	6	28	53 (24.1)	339 (154.0)	70900 (120 4 59)	3 1/8 (79)	3 1/8 (79)	1	3 1/8 (7 9)	2 1/8 (54)	1	2880 (1309)
TVC103	6	35	63 (28.5)	418 (189.8)	69000 (117231)	3 1/8 (79)	3 1/8 (79)	1	3 1/8 (79)	2 5/8 (66)	1	3150 <i>(1432)</i>

- (1) For R407A, R507 use R22 Charge x 0.87. For R407-C use R22 Charge x 0.97.
- For R134a and R502 use R22 Charge. For R12 use R22 Charge x 1.1.

 (2) Normal Charge is the refrigerant charge for warm ambient or summer operation. For low ambient or winter charge with flooded head pressure control and fan cycling see Page 47 and Page 48.

 (3) 90% FULL is the liquid refrigerant weight at 90% of internal volume and is for reference ONLY.
- (4) For 50Hz Fan data use 60Hz CFM (m³/h) x 0.83.capacity multiply by 0.92.
- (5) Less weight of refrigerant charge.

GENERAL SPECIFICATIONS - 1140 RPM MODELS

(DOUBLE ROW MODELS)

				22			Pipi	ng Cor	nections			
TVC	Fans	Max.		t Charge (1)	Air Flow Rate ⁽⁴⁾	ı	CABLE FOR 0° F DESIG			ICABLE FO		Weights (5)
MODEL NUMBER	Long	No. of Feeds	Normal (2)	90% FULL ⁽³⁾		Inlet	Outlet	Qty.	Inlet	Outlet	Qty.	
			lbs (kg)	lbs (kg)	CFM (<i>m</i> ³ / <i>h</i>)	INCHES (mm)	INCHES (mm)	Giy.	INCHES (mm)	INCHES (mm)	Qty.	lbs (kg)
TVC044	2	34	16 (7.2)	98 (44.5)	40100 (68130)	2 1/8 (54)	1 3/8 (35)	2	1 3/8 (35)	1 1/8 (28)	2	1070 (486)
TVC049	2	45	19 (8.7)	125 (57.0)	38600 (65581)	2 1/8 (54)	1 3/8 (35)	2	1 5/8 (41)	1 1/8 (28)	2	1200 (545)
TVC054	2	56	23 (10.3)	153 (69.5)	37100 (63033)	2 1/8 (54)	1 3/8 (35)	2	1 5/8 (41)	1 1/8 (28)	2	1330 (605)
TVC057	2	45	25 (11.3)	157 (71.3)	47300 (80363)	2 1/8 (54)	1 5/8 (41)	2	1 5/8 (41)	1 1/8 (28)	2	1400 (636)
TVC064	2	56	29 (13.3)	192 (87.2)	46000 (78154)	2 1/8 (54)	1 5/8 (41)	2	2 1/8 (54)	1 3/8 (35)	2	1590 (723)
TVC073	3	68	28 (12.7)	181 (82.1)	57900 (9837 2)	2 5/8 (66)	1 5/8 (41)	2	2 1/8 (54)	1 3/8 (35)	2	1720 (782)
TVC081	3	85	33 (15.2)	227 (103.4)	55700 (94634)	2 5/8 (66)	1 5/8 (41)	2	2-1/8 (54)	1 3/8 (35)	2	1920 (873)
TVC086	3	68	34 (15.4)	231 (104.9)	71000 (120629)	2 5/8 (66)	2 1/8 (54)	2	2 1/8 (54)	1 3/8 (35)	2	2060 (936)
TVC096	3	85	40 (18.3)	283 (128.6)	69000 (117231)	2 5/8 (66)	2 1/8 (54)	2	2 1/8 (54)	1 5/8 (41)	2	2340 (1064)
TVC112	4	42	52 (23.8)	344 (156.3)	96200 (163444)	2 5/8 (66)	2.1/8 (54)	2	2 1/8 (54)	1 5/8 (41)	2	2780 (1264)
TVC126	4	56	65 (29.7)	449 (204.3)	64500 (160556)	3 1/8 (79)	2 1/8 (54)	2	2 5/8 (66)	1 5/8 (41)	2	3100 (1409)
TVC137	4	70	79 (35.7)	555 (252.2)	91900 (156138)	3 1/8 (79)	2 5/8 (66)	2	2 5/8 (66)	1 5/8 (41)	2	3460 (1573)
TVC158	5	56	78 (35.6)	553 (251.6)	118000 (20482)	3 1/8 (79)	2 5/8 (66)	2	2 5/8 (66)	2 1/8 (54)	2	4000 (1818)
TVC172	5	70	101 (46.0)	691 (314.0)	115000 (195385)	3 1/8 (79)	2 5/8 (66)	2	2 5/8 (66)	2 1/8 (54)	2	4460 (2027)
TVC190	6	56	106 (48.1)	678 (308.1)	142000 (241258)	3 1/8 (79)	3 1/8 (79)	2	3 1/8 (79)	2 1/8 (54)	2	4850 (2205)
TVC206	6	70	126 (57.1)	835 (379.7)	138000 (234462)	3 1/8 (79)	3 1/8 (79)	2	3 1/8 (79)	2 5/8 (66)	2	5400 (2 <i>4</i> 55)

- (1) For R407A, R507 use R22 Charge x 0.87. For R407-C use R22 Charge x 0.97. For R134a and R502 use R22 Charge. For R12 use R22 Charge x 1.1.
- (2) Normal Charge is the refrigerant charge for warm ambient or summer operation. For low ambient or winter charge with flooded head pressure control and fan cycling see Page 47 and Page 48.
- (3) 90% FULL is the liquid refrigerant weight at 90% of internal volume and is for reference ONLY.
- (4) For 50Hz Fan data use 60Hz CFM (m^3/h) x 0.83.capacity multiply by 0.92.
- (5) Less weight of refrigerant charge

ELECTRICAL DATA - 1140 RPM MODELS

60Hz

NO.	2	08-230/3/60			460/3/60			575/3/60	
OF FANS	TOTAL FLA	MCA	МОР	TOTAL FLA	MCA	МОР	TOTAL FLA	MCA	МОР
4	26.4	31.0	35	12.4	13.2	15	10.0	10.6	15
5	33.0	36.0	40	15.5	16.3	20	12.5	16.0	20
6	39.6	46.0	50	18.6	21.0	25	15.0	17.0	20
8	52.8	61.0	70	24.8	25.6	30	20.0	20.6	25
10	66.0	71.0	80	31.0	36.0	40	25.0	25.6	30
12	79.2	91.0	100	37.2	41.0	45	30.0	36.0	40

M.C.A. = Minimum Circuit Ampacity (AMPS)
M.O.P. = Maximum Overcurrent Protection (AMPS)

ELECTRICAL DATA - 1140 (950) RPM MODELS

50Hz

NO.		200-220/3/50			380-400/3/50	
OF FANS	TOTAL FLA	MCA	МОР	TOTAL FLA	MCA	MOP
4	21.6	23.0	25	10.4	11.1	15
5	27.0	31.0	35	13.0	16.0	20
6	32.4	36.0	40	15.6	16.3	20
8	43.2	46.0	50	20.8	26.0	30
10	54.0	55.4	60	26.0	31.0	35
12	64.8	71.0	80	31.2	36.0	40

M.C.A. = Minimum Circuit Ampacity (AMPS)
M.O.P. = Maximum Overcurrent Protection (AMPS)

RECEIVER SELECTIONS

(SINGLE ROW MODELS)

				Single Ci	Sircuit	ircuit Per Fan Wide	jde				Т	vo Equal	Circui	Two Equal Circuits Per Fan Wide	Wide		
	Fan		Std. Size	9			Over Size	ze			Std. Size	e			Over Size	e.	
Model	Long	Capacity* Lbs. (kg)	Capacity* Diameter Lbs. Inches (Kg) (mm)	Length Inches (mm)	Qfy.	Capacity* Lbs. (kg)	Diameter Inches (mm)	Length Inches (mm)	Qty.	Capacity* Lbs. (kg)	Diameter Inches (mm)	Length Inches (mm)	Qty.	Capacity* Lbs. (kg)	Diameter Inches (mm)	Length Inches (mm)	Qty.
TVC056	4	219 (99.7)	(273)	72 (1814)	-	182 (82.8)	10 3/4 (273)	60 (1524)	2	119 (54.2)	8 5/8 (219)	60 (1524)	2	182 (82.8)	10 3/4 (273)	60 (1524)	2
TVC063	4	295 (134.0)	10 3/4 (273)	96 (2419)	+	1 82 (82.8)	10 3/4 (273)	60 (1524)	2	119 (54.2)	8 5/8 (219)	60 (1524)	2	182 (82.8)	10 3/4 (273)	60 (1524)	2
TVC068	4	295 (134.0)	10 3/4 (273)	96 (2419)	-	182 (82.8)	10 3/4 (273)	60 (1524)	2	182 (82.8)	10 3/4 (273)	60 (1524)	2	182 (82.8)	10 3/4 (273)	60 (1524)	2
TVC079	5	295 (134.0)	10 3/4 (273)	96 (2419)	-	(219)	10 3/4 (273)	72 (1829)	2	182 (82.8)	10 3/4 (273)	60 (1524)	2	219 (99.7)	10 3/4 (273)	72 (1829)	2
TVC085	2	2 95 (134.0)	10 3/4 (273)	96 (2419)	-	219 (99.7)	10 3/4 (273)	72 (1829)	2	182 (82.8)	10 3/4 (273)	60 (1524)	2	219 (99.7)	10 3/4 (273)	72 (1829)	2
TVC095	9	182 (82.8)	10.3/4 (273)	(1512)	2	295 (134.0)	10 3/4 (273)	96 (2438)	2	182 (82.8)	10 3/4 (273)	60 (1524)	2	295 (134.0)	10 3/4 (273)	96 (2438)	2
TVC103	9	219 (99.7)	10.3/4 (273)	72 (1814)	2	295 (134.0)	10 3/4 (273)	96 (2438)	2	21 9 (99.7)	10 3/4 (\$73)	72 (1829)	2	295 (134.0)	10 3/4 (273)	96 (2438)	2

NOTE

These receiver selections are for R22 @ 90% full. Please ensure receiver sizing is appropriate for the application Receivers are optional items.

* Capacity per receiver (R22). Multiply capacity by 0.87 for R404A/R507.

RECEIVER SELECTIONS

(DOUBLE ROW MODELS)

Г			Qty.		_	+	_	+	_	+	4	T	4		4	-	4	-	_	t	_	4	_	4	_	+	_	,	_	4	_	,	4	.	4
		⊢		6								6		4		\dashv		_				_				\dashv		4				\dashv			
	9Z	Length	Inches	(mm)	48	(1219)	48	(1219)	48	(1219)	48	(1219)	48	(1219)	09	(1524)	09	(1524)	9	(1524)	09	(1524)	09	(1524)	09	(1524)	9	(1524)	72	(1829)	72	(1829)	96	(2438)	96
Wide	Over Size	Diameter	Inches	(mm)	8 5/8	(219)	8 2/8	(219)	8 2/8	(219)	8 5/8	(219)	8 5/8	(219)	8 2/8	(219)	8 2/8	(219)	8 2/8	(219)	8 2/8	(219)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4
Two Equal Circuits Per Fan Wide		Capacity*	Lbs.	(kg)	92	(43.0)	92	(43.0)	92	(43.0)	95	(43.0)	95	(43.0)	119	(54.2)	119	(54.2)	119	(54.2)	119	(54.2)	182	(82.8)	182	(82.8)	182	(82.8)	219	(99.7)	219	(69.7)	295	(134.0)	295
Circui			Qty.		_	1	_	†	-	t	4		4		4	-	Α	٢	7	t	_	4	_	4	_	t	4		1	4	V		4		4
o Equal		Length	Inches	(mm)	36	(914)	36	(914)	36	(914)	36	(914)	36	(914)	48	(1219)	48	(1219)	48	(1219)	48	(1219)	09	(1524)	09	(1524)	09	(1524)	09	(1524)	09	(1524)	09	(1524)	72
<u> </u> *	Std. Size	Diameter	Inches	(mm)	8 5/8	(219)	8 2/8	(219)	8 2/8	(219)	8 5/8	(219)	8 5/8	(219)	8 2/8	(219)	8 2/8	(219)	8 2/8	(219)	8 2/8	(219)	8 5/8	(219)	8 5/8	(219)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4
		Capacity*	Lbs.	(kg)	20	(31.7)	20	(31.7)	20	(31.7)	20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	(31.7)	0 j	(31.7)	92	(43.0)	92	(43.0)	95	(43.0)	95	(43.0)	119	(54.2)	119	(54.2)	182	(82.8)	182	(82.8)	182	(82.8)	182	(82.8)	219
		Ĕ	Qty.		c	۷	,	7	,	7	7		7		^	1		1	0	-	,	7	_	4	7	†	_	t	_	4			4		4
		⊢	luches	(mm)	09	1524)	09	1524)	09	1524)	09	1524)	72	1829)	72	1829)	72	(1829)	96	(2438)	96	(2438)	09	1524)	09	(1524)	09	1524)	72	1829)	72 /	1829)	96	2438)	96
	Over Size	Diameter L	Inches Ir	(mm)	8 5/8	(219)	8 2/8	(219)	_	(273) (7			10 3/4	(273)	-	(273) ((273)	10 3/4	(273)	10 3/4	(273) (_	(273) (10 3/4	(273) (10,3/4	(273)	10 3/4			(273)	10 3/4
Circuit Per Fan Wide		Capacity* D	Lbs.	(kg)	119	(54.2)	119	(54.2)	182	(82.8)	182	(82.8)	219	(98.7)	219	(99.7)	219	(99.7)	295	(134.0)	295	(134.0)	182	(82.8)	182	(82.8)	182	(82.8)	219	(99.7)	219	(2.66)	295	(134.0)	295
ircuit Po		<u> </u>	Qty.		c	7	c	7	٥	7	2	1	2		^	1	0	1	,	7	•	1	9	7	2	7	S	y.	·	7	c	7	4	-	4
Single C	Φ.	Length	Inches	(mm)	48	(1219)	48	(1219)	09	(1524)	09	(1524)	09	(1524)	09	(1524)	09	(1524)	09	(1524)	09	(1524)	72	(1829)	96	(2438)	96	(2438)	96	(2438)	96	(2438)	09	(1524)	72
	Std. Size	Diameter	Inches	(mm)	8 5/8	(219)	8 5/8	(219)	8 5/8	(219)	8 5/8	(219)	8 5/8	(219)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4	(273)	10 3/4
		ty*	Lbs.	(kg)	95	(43.0)	95	(43.0)	119	(54.2)	119	(54.2)	119	(54.2)	182	(82.8)	182	(82.8)	182	(82.8)	182	(82.8)	219	(2.66)	295	(134.0)	295	(134.0)	295	(134.0)	295	(134.0)	182	(82.8)	219
	Fan				·	7	,	7	- 0	7	7	\dagger	2		c	,	ď)	ď	,	ď	ი	_	1		t	_	t	7	n .	ц	,	· ·	,	9
		Model			7.V.C.O.Y.T.	4400	TVC040	1 4 6 6 4 3	TVC054	1	TVC057		TVC064		TVC073		TVC081		TVC086	2004	TVC096	060041	TVC442	7112	TVC126	0 0 0	TVC137	5	TVC158	061001	TVC172	7.1.7	TVC190		TVC206

These receiver selections are for R22 @ 90% full. Please ensure receiver sizing is appropriate for the application Receivers are optional items.

* Capacity per receiver (R22). Multiply capacity by 0.87 for R404A/R507.

CONDENSER THEORY

The purpose of a refrigeration system is to absorb heat from an area where it is not wanted and reject this heat to an area where it is unobjectionable. By referring to the diagram below, it can be seen that only a few components are required to perform this task.

High pressure/high temperature vapor leaves the compressor and is forced into the condenser via the discharge line. The condenser first desuperheats the vapor down to its saturation point. This saturation point can be expressed as the condensing temperature of the refrigerant and varies with condenser size, load and ambient temperature.

Now the condenser must remove the latent heat of condensation from the refrigerant so that it may fully condense. After the refrigerant has fully condensed, it will be subcooled to some extent.

The liquid leaving the condenser is still at a high pressure but at a much lower temperature and drains into the receiver. As the liquid level in the receiver increases, the vapor is allowed to vent back up to the condenser via the condensate line.

Because the dip tube almost reaches the bottom of the receiver, only liquid will enter the liquid line. This liquid now passes through the metering device where its pressure is reduced to the evaporating pressure. The temperature will drop with pressure since the refrigerant will always attempt to meet its saturation point during a change of state.

The condensing temperature decreases as the ambient temperature drops and/or as the condenser surface increases.

GLOSSARY OF TERMS

Balance point - after a system stabilizes, the heat added to the refrigerant during the refrigeration cycle will equal the heat rejected at the condenser. The balance point usually refers to the actual TD that the system is operating at. The balance point could refer to a low side balance or a high side balance. For example, a system operating with a **120** °F (48.9 °C) condensing temperature in a **90** °F (32.2 °C) ambient will have a condenser balance point of **30** °F (-1.1 °C) TD.

Circuit - a circuit can be considered a group of feeds. A condenser may be sized to handle several refrigeration systems at one time. Each system is considered one circuit and the number of feeds required for each circuit depends on the THR for that particular system. Each circuit has its own inlet and outlet header. The number of circuits on a condenser can not exceed the total number of feeds available.

Compression Ratio - Compression ratio equals the discharge pressure in pounds per square inch absolute (psia) divided by the suction pressure in psia. The compression ratio in a compressor increases as suction pressure decreases and as discharge pressure increases. (at sea-level, psia is equal to psig plus 14.7).

Compressor Capacity - can be defined as the actual refrigerating capacity available at the evaporator and suction line after considering the overall system balance point. Compressor capacity is mainly affected by the evaporating and condensing temperatures of the system.

Condensate Line - (also called "Drain Leg") is a term that describes the refrigerant line between the condenser and the receiver.

The condensate line should drop vertically and is typically larger than the liquid line. This is to promote free draining of the refrigerant from the condenser to the receiver.

Condenser Temperature Difference (TD) - is the difference between the condensing temperature of the refrigerant and the temperature of the air entering the condenser.

Condensing Temperature (CT) - is the temperature where the refrigerant vapor condenses back to a liquid. This temperature varies with condenser size. Condensing temperature should be kept as low as possible to maintain higher refrigerating capacity and system efficiency

Desuperheat - refers to the lowering of refrigerant superheat. Hot vapor entering a condenser must first be desuperheated before any condensing of the refrigerant can take place.

Evaporating Temperature - the temperature at which heat is absorbed in the evaporator, at this temperature, the refrigerant changes from a liquid to a vapor. This evaporating temperature is dependent on pressure and must be lower than the surrounding temperature for heat transfer to take place.

Feed - a single path for refrigerant flow inside a condenser. This path begins at the inlet header and terminates at the condenser's outlet header. These feeds can be grouped together to accommodate one or more circuits.

Heat of Compression - heat is added to the refrigerant as it is compressed. Evidence of this can be observed on the pressure-enthalpy diagram for the refrigerant being used. The amount of this heat is dependent on the refrigerant type and compression ratio.

Additional heat from friction also increases the heat of compression. All of this heat along with the heat absorbed in the evaporator, suction line and any motor heat must be rejected by the condenser.

Latent Heat of Vaporization (also Latent Heat of Condensation) - refers to the heat required to fully vaporize or condense a refrigerant. This latent heat varies with temperature and pressure. Latent heat is often referred to as hidden heat since adding heat to a saturated liquid or removing heat from a saturated vapor will result in a change of state and heat content but not a change in temperature.

Liquid Line - is the piping between the receiver and the metering device. On systems without a receiver, the liquid line runs between the condenser and the metering device.

.

GLOSSARY OF TERMS

Open Drive - This term is given to a compressor where its driving motor is separate from the compressor. In this type of compressor, motor heat is not transferred to the refrigerant.

Refrigerating Effect - the total amount of heat absorbed by the evaporator. This heat includes both *latent heat* and *superheat*. This value is usually expressed in BTU/Hour, (BTUH), or 1000 BTU/Hour (MBH)

Saturation - occurs whenever the refrigerant exists in both a vapor and liquid state, example: a cylinder of refrigerant is in a saturated condition or state of equilibrium. Any heat removed from a saturated vapor will result in condensation. Conversely, any heat added to a saturated liquid will result in evaporation of the refrigerant. Temperature pressure charts for the various refrigerants indicate saturation values. For a single component refrigerant, each temperature value can only have one pressure when the refrigerant is either a saturated vapor or saturated liquid. A single component refrigerant can not change state until it approaches its saturation temperature or pressure. For refrigerant blends, the pressuretemperature relationship is more complex. Simply

stated, Dew point temperature (saturation point in evaporator-low side) and Bubble point temperature (saturation point in condenser-high side) are used to define their saturated condition.

Subcool - to reduce a refrigerant's temperature below its saturation point or bubble point. Subcooling of the refrigerant is necessary in order to maintain a solid column of liquid at the inlet to the metering device. Subcooling can take place naturally (in the condenser) or it can be accomplished by a suction liquid heat exchanger or a mechanical sub-cooler (separate refrigeration system).

Superheat - to heat a refrigerant above its saturation point or dew point. The "amount of superheat" is the difference between the actual refrigerant temperature and its saturation temperature. This value is usually expressed in degrees Fahrenheit or degrees Celsius.

Total Heat of Rejection (THR) is the heat absorbed at the evaporator plus the heat picked up in the suction line plus the heat added to the refrigerant in the compressor. Condensers are sized according to the required THR. Compressor capacity and the heat of compression are usually enough to determine the THR.

CONDENSER SELECTION

During a condenser selection process, the application engineer should choose a condenser which is large enough to reject all of the heat added to the refrigerant during the refrigerating cycle. When the during low ambient periods. condenser is sized to equal the total heat of rejection (THR) at design conditions, enough heat will be rejected to maintain the required condensing temperature. This will ensure that sufficient refrigeration capacity will be maintained at the evaporator during the warm summer period when it is needed the most.

If a condenser is undersized, the condensing temperature (CT) will be driven upwards. This naturally occurs as the system seeks its new balance point. As the CT increases, the operating temperature difference (TD) °F the condenser also increases. Even though the capacity of the condenser increases with the higher TD, the refrigerating capacity of the compressor will decrease due to the higher condensing temperature. An undersized condenser may perform satisfactorily when ambient temperatures are below design, but the overall system capacity will not be high enough during the warmer periods.

Oversizing a condenser increases project costs and can also lead to undesirable operating conditions.

Low ambient control devices such as pressure regulators and fan cycling switches operate to maintain a sufficient pressure in the condenser

On systems utilizing a receiver and flooding type of head pressure control, more refrigerant will be required to flood the condenser in order to achieve the desired condensing pressure.

Consider an air conditioning system with an oversized condenser which is only used during the summer time and does not have any type of head pressure control. This particular system may experience problems due to a lack of subcooling. Since the condenser was oversized the amount of natural subcooling available is less. The maximum amount of natural subcooling possible is the difference between the condensing temperature and the ambient temperature. If this amount of subcooling is not enough to offset the pressure losses in the liquid line, then flashing is certain to occur.

Flashing produces vapor at the metering device which was designed to meter 100% liquid. One cure for this is to apply head pressure control devices to the system that will increase the head pressure and ensure adequate liquid subcooling.

CONDENSER SELECTION

PRELIMINARY DATA REQUIREMENTS

There are several factors that influence the size of an air cooled condenser. Before a condenser can be properly selected, this information must be obtained. It may be convenient for you to refer to the calculation worksheets as you read through the following information.

1. What are the Desired Evaporating and Condensing Temperatures?

The evaporating temperature is needed to determine the THR (total heat of rejection) of the condenser. As the evaporating temperature is lowered, the heat of compression increases due to the higher compression ratio. This affects THR.

The required condensing temperature (CT) must be known before the temperature difference can be determined. This is necessary since condenser capacity varies with temperature difference. The required compressor capacity will determine the maximum CT since the compressor can only provide this capacity at certain operating conditions. You could also refer to Table 1 for CT recommendations. The heat of compression varies with compression ratio. Both evaporating and condensing temperatures affect the compression ratio.

Often customers may request a specified TD value (i.e **10**, **15** °F, $(5.5 \, ^{\circ}C, \, 8.3 \, ^{\circ}C)$ etc.). The condensing temperature is then established as being the sum of this TD value and the design ambient temperature. (i.e **10** + **95** = **105** °F $(5.5 + 35 = 40.5 \, ^{\circ}C)$)

2. Compressor Capacity

Determine the capacity of the compressor at the desired evaporating and condensing conditions. Remember, tons refrigeration does not necessarily equal horsepower. As the evaporating temperature decreases and/or the condensing temperature increases, tons refrigeration per horsepower decreases. One ton refrigeration equals 12000 Btuh (3519W).

3. Condenser Ambient Design Temperature

This will be the maximum design temperature of the air entering the condenser. It is typical to add about 5 °F to the maximum outdoor design temperature in some instances to compensate for radiation from a dark surface such as a black roof.

4. Type of Compressor

It is necessary to identify the type of compressor to be utilized in the application so that accurate heat of rejection information may be obtained. For example, open-drive compressors can be belt driven or direct coupled to the motor. Electrical energy from the motor is converted to heat energy which is not transferred to the refrigerant as in a refrigerant cooled compressor.

In a hermetic refrigerant cooled compressor, the cool

suction vapor picks up heat as it travels through the warm motor windings. The condenser must be sized to reject this heat along with any other heat absorbed by the refrigerant. It can be observed in Table 2 that hermetic refrigerant cooled compressors have higher heat of rejection factors.

5. Heat of Compression

As the refrigerant is compressed in the compressor, its heat content increases due to the physical and thermodynamic properties of the refrigerant. Additional heat from friction between moving parts in the compressor also increases the heat content of the refrigerant. The amount of heat added to the refrigerant is dependent on the refrigerant type, the compression ratio and the type of compressor.

Accurate THR or heat of compression factors may be available from the compressor manufacturer. Always attempt to access this information prior to using other methods. If this information is not available, refer to the heat of rejection factors in Table 2.

However, in situations where your application exceeds the limits of this table, such as in compound compression and cascade systems, one of the following calculations may be performed.

For OPEN DRIVE COMPRESSORS

Total heat of Rejection = Compressor Capacity (Btuh) + (2545 x BHP) (KW) + (3410 x KW)

(BHP - Brake Horsepower of the motor)

For SUCTION COOLED COMPRESSORS:

Total heat Rejection = Compressor Capacity (BTUH) + (3413 x KW) (KW may be obtained from the power input curve for that compressor)

6. What is the Refrigerant Type?

A condenser's capacity can vary by 8 to 10% due to differences in physical and thermodynamic properties. Refer to the correct refrigerant capacity table or use factor as indicated. (see P. 4)

7. Altitude

The volume of a given mass of air increases as it rises above sea level. As its volume increases, its density decreases. As the air becomes less dense, its heat capacity decreases. Therefore, more air volume would have to be forced through the condenser at **6,000 feet** (1852 m) above sea level than at sea level.

Since condenser capacities are based on operation at sea level, an altitude correction factor must be applied to the total heat of rejection. Basically, the load on the condenser will be increased to a point which will compen sate for the higher altitude.

CONDENSER SELECTION

8. <u>Are you Replacing a Water Cooled Condenser with</u> a Remote Air Cooled Condenser?

If this is the case, it should be remembered that the compressor will operate at a higher discharge pressure after converting to air cooled. To help minimize the resulting loss in capacity, the condenser should be sized generously. In other words, you may consider keeping the balance point of the condenser as low as possible.

9. Is this an application for multiple circuits?

If you wish to utilize the condenser for multiple circuits, then all of the above data must be obtained for <u>EACH</u> circuit. After obtaining this information, proceed to the MULTIPLE CIRCUIT WORKSHEET (for single circuit applications refer to the SINGLE CIRCUIT WORKSHEET.

TABLE 1 - CONDENSING TEMPERATURE GUIDELINES

Evaporating Temperature			sing Temperature (29.4 to 40.5 °C)	e Guidelines Ambient Temperatu	re)	TD* ∘F	TD * (°C)
remperature	85 °F (29.4 °C)	90 °F (32.2 °C)	9 5 °F (35 °C)	100 °F (37.8 °C)	105 °F (40.6 °C)	-	(*0)
Low Temp Systems (-40 °F to +9 °F Evap Temps) (-40 °C to -12.7 °C Evap Temps)	95-100 °F (35-37.8 °C)	100-105 °F (37.8-40.6 °C)	105-110 °F (40.6-43.3 °C)	110-115 °F (43.3-46.1 °C)	115-120 °F (46.1-48.9 °C)	10-15	(5.6-8.3)
Medium Temp Systems (+10 °F to +34 °F Evap Temps) (-12.2 °C to 1.11 °C Evap Temps)	100-105 °F (37.8-40.6 °C)	105-110 °F (40.6-43.3 °€)	110-115 °F (43.3-46.1 °C)	115-120 °F (46.1-48.9 °C)	120-125 °F (48.9-51.7 °C)	15-20	(8.3-11.1)
High Temp Systems (+35 °F to +50 °F Evap Temps) (1.6 °C to 10 °C Evap Temps)	105-110 °F (40.6-43.3 °C)	110-115 °F (43.3-46.1 °C)	115-120 °F (46/1-48.9 °C)	120-125 °F (48.9-51.7 °C)	125-130 °F (51.7-54.4 °C)	20-25	(11.1-13.9)
Air Conditioning Systems (+40 °F to +50 °F Evap Temps) (4 °C to 10 °C Evap Temps)	110-115 °F (43.3-46.1 °C)	115-120 °F (46.1-48.9 °C)	120-125 °F (48.9-51.7 °C)	125-130 °F (51.7-54.4 °C)	130-135 °F (54.4-57.2 °C)	25-30	(13.9-16.7)

^{*} TD - Condenser TD guideline

TABLE 2 - HEAT OF REJECTION FACTORS

EVAPOR TEMPER							9	CONDE	NSING	ГЕМРЕ	RATUR	E					
IEWPER	AIUKE	90°F	(32°C)	100°F	(38°C)	105°F	(41°C)	110°	(43°C)	115°F	(46°C)	120°F	(49°C)	130°F	(55°C)	140°F	(60°C)
°F	°C	OPEN	HERM	OPEN	HERM	OPEN	HERM	OPEN	HERM	OPEN	HERM	OPEN	HERM	OPEN	HERM	OPEN	HERM
-40	-40	*	1.66	*	1.73	*	1.76	*	1.80	*	1.90	*	2.00	*	*	*	*
-30	-34	1.37	1.57	1.42	1.62	1,44	1.65	1.47	1.68	*	1.74	*	1.80	*	*	*	*
-20	-29	1.33	1.49	1.37	1.53	1.39	1.55	1,42	1.58	1.44	1.61	1.47	1.65	*	*	*	*
-10	-23	1.28	1.42	1.32	1.46	1.34	1.48	1.37	1.50	1.39	1.53	1.42	1.57	1.47	1.64	*	*
0	-18	1,24	1.36	1.28	1.40	1.30	1.42	1.32	1.44	1.34	1.47	1.37	1.50	1.41	1.56	1.47	1.62
10	-12	1.21	1.31	1.24	1.34	1.26	1.36	1.28	1.38	1.30	1.40	1.32	1.43	1.36	1.49	1.42	1.55
20	-7	1.17	1.26	1.20	1.29	1.22	1,31	1.24	1.33	1.26	1.35	1.28	1.37	1.32	1.43	1.37	1.49
30	-1	1.14	1.22	1.17	1.25	1.18	1.26	1.20	1.28	1.22	1.30	1.24	1.32	1.27	1.37	1.32	1.42
40	4	1.12	1.18	1.15	1.21	1.16	1.23	1.17	1.24	1.18	1.25	1.20	1.27	1.23	1.31	1.28	1.35
50	10	1,09	1.14	1.12	1.17	1.13	1.19	1.14	1.20	1.16	1.22	1.17	1.23	1.20	1.26	1.24	1.29

OPEN - Direct Drive or Belt Drive open compressors

HERM - Hermetic or semi-Hermetic, Refrigerant (suction) cooled motor compressors.

WORKSHEETS - SINGLE CIRCUIT SINGLE CIRCUIT WORKSHEET

(REFER TO P. 32 FOR GUIDELINES, SEE SAMPLE SELECTION ON P. 36)

JOB RFF

		000	\L.	
1. SYSTEM DATA REQUIREMENTS				
EVAP TEMP = • F (°C)		COND TEMP=		°F (°C)
COMPR. CAPACITY=	Btuh / 1000 =	MBH (KW)		
COND. DESIGN AMBIENT TEMP=	(AT)°	F (°C) TD=	(Cond.	Temp Ambient Temp)
COMPRESSOR TYPE= □ OPEN □	☐ HERMETIC (Refrig	erant cooled)		
REFRIGERANT= R REF.	FACTOR=	(see P. 4)		
ALTITUDE=	or	FEET (m)	ALT. FACTOR: (See P.4)	
2. THR (Total Heat of Rejection) CALCULATION	١			
COMPR. CAPACITY (MBH) X HR f (KW) X	X AI	Tf (m) X	REFf	=THR (MBH) (KW)
ALT f = Altitude/elevation f REF f = Refrigerant Corre Alternate refrigerant bases R12 = 1/.95 = 1.05, R134a R502 = 1/.98 = 1.02, R404 THR = Total Heat of Reject 3. CONDENSER MODEL SELECTION	ction factor (R22 = 1) d on factors from P. 4 a = 1/.94 = 1.06, 1A/R507/R407A/B = 1.	7.97 = 1.03	by condenser	
Refer to the R22 CAPACITY section (P. 4) a the above calculated THR value. (NOTE: us adjusted for alternate types).				
COND. MODEL#	(PÉ	ected R 1°F TD value = R 1 ° <i>C</i>)		(B) (see P. 4)
4. ACTUAL CONDÉNSING TEMP CALCULATION				
TIAR (from sec. 2) / value (B)	= ATD (actu	al Temperature Diffe	erence)	
To find the Actual Condensing Temp. (ACT) to the design Ambient Temperature (AT). ATD + AT = ACT	just add the Actual Te	mperature Difference	e (ATD)	
+ =	°F (°C)			

NOTE: The Actual Condensing Temp. MUST EQUAL or BE LESS THAN the condensing temp recorded in section 1 above. This ensures the compressor capacity is maintained when operating the condenser at the designed ambient temperature.

For further assistance please contact your local TRENTON sales representative.

WORKSHEETS - MULTIPLE CIRCUITS

MULTIPLE CIRCUIT WORKSHEET

(REFER TO P. 32 FOR GUIDELINES & SEE SAMPLE SELECTION ON P. 37)

1. SYSTEM DATA REC		MD_		_ (AT) °F (°	Cl	301	REF:		
ALTITUDE = \(\tag{F}		or		- (AT) T (- FEET	FACTOR =			(See	P. 4)
		0.		CIRCUITINFO	_				y ,
		CIRC#1		CIRC#2	CIR	C#3		CIRC#4	
	OPEN				[
	HERMETIC				l				
EVAP. TEMP	=_								
CONDENSING									
COMPR CAP.	(MBH) (KW)=						-		
REFRIGERAN	Γ=				_				
TD =									
(Cond Temp -	Amb.)								
2. THR (Total Heat of									
	COMPR CA	PACITY (MBH)	X	HRf X	ALTf X	REFf		MBH) /TD	=CL
	CIRC#1 _		Χ	×	X		_ <	(KW)	
					X		_ =		
	CIRC#3 _		_ X	X_	X_		_ ≠	/	=
	CIRC#4 _		_ X	X_			/= /		=
144	115 (11 (,	11 0 0 07)	TOT	ral thr (Capacity (N	/IBH / 1 °F TC	D) =
vvnere		f rejection factor de/elevation fact			2 for Higher)				
		gerant Correctio			. 2 ioi migriei)				
		1.05, R134a = 1							
	R502 = 1/.98	= 1.02, R404A /	R507 / F	R407A/B = 1/.9	7 = 1.03				
		acrost boood	n factors	from P 4					
	Alternate refri	gerani based 🗨	II Idolois	, 110111 1 . 4					
	THR = Total H	leat of Rejection	n (MBH)	to be rejected	by condenser	(R22 capa	acity)		
	THR = Total F TD = Condens	leat of Rejection sing Temp - Amb	n (MBH) pient Tem	to be rejected	by condenser	(R22 capa	acity)		
	THR = Total F TD = Condens	leat of Rejection	n (MBH) pient Tem	to be rejected	by condenser	(R22 capa	acity)		
3. CONDENSER SELE	THR = Total F TD = Condens CL = Circuit lo	leat of Rejection sing Temp - Amb	n (MBH) pient Tem	to be rejected	by condenser	(R22 capa	acity)		
3. CONDENSER SELE Refer to the R22 CA	THR = Total H TD = Condens CL = Circuit Id	Heat of Rejection sing Temp - Amb pading per 1°F (n (MBH) pient Tem 1°C) TD	to be rejected perature				above Total	THR Capacity
	THR = Total H TD = Condens CL = Circuit Id CTION PACITY selection () TD).	Heat of Rejection sing Temp - Amb adding per 1°F (n (MBH) pient Tem 1°C) TD	to be rejected apperature	= (1°C) TD that \	will closely	match the	above Total	THR Capacity
Refer to the R22 CA	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selectio	Heat of Rejection sing Temp - Amb adding per 1°F (n (MBH) pient Tem 1°C) TD et a conde	to be rejected appearature enser at the 1°I e model select		will closely	match the	above Total	THR Capacity
Refer to the R22 CA	THR = Total H TD = Condens CL = Circuit Id CTION PACITY selection () TD).	Heat of Rejection sing Temp - Amb adding per 1°F (n (MBH) bient Tem 1°C) TD ct a conde	to be rejected apperature enser at the 1°I e model selection of Feeds	(1°C) TD that ted, refer to P. 4	will closely	match the er	above Total	THR Capacity
Refer to the R22 CA	THR = Total H TD = Condens CL = Circuit Id CTION PACITY selection () TD).	Heat of Rejection sing Temp - Amb adding per 1°F (n (MBH) bient Tem 1°C) TD ct a conde For the Max n MBH	to be rejected apperature enser at the 1°I e model selection of Feeds @ 1°F TO per	(1°C) TD that ted, refer to P. 4	will closely	match the	above Total	THR Capacity
Refer to the R22 CA	THR = Total H TD = Condens CL = Circuit Id CTION PACITY selection () TD). COND. MODE	Heat of Rejection sing Temp - Amb pading per 1°F (*) on (P.4) and selection (P.4)	on (MBH) bient Tem 1°C) TD ct a conde For the Max n MBH (KW @	to be rejected apperature enser at the 1°I e model selection of Feeds @ 1°F TD per @ 1°C TD)	ed, refer to P. 4	will closely	match the er	above Total	THR Capacity
Refer to the R22 CA	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE	Heat of Rejection sing Temp - Amb adding per 1°F (or (MBH) bient Tem 1°C) TD For the Max n MBH (KW @ Is require	to be rejected apperature enser at the 1°I e model selection of Feeds @ 1°F TD per @ 1°C TD)	ed, refer to P.4	will closely	r match the er — (A) — (B)		THR Capacity o nearest whole #)
Refer to the R22 CA	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE	Heat of Rejection sing Temp - Amboading per 1°F (*) In (P.4) and selection (P.4) and	For the Max n MBH (KW @ s require TD) /	e model selection of Feeds 1° F TD per 1° C TD) 1° TO per 2° TO TD)	ed, refer to P.4	will closely	r match the er — (A) — (B)		
Refer to the R22 CA	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the	Heat of Rejection sing Temp - Amb pading per 1°F (*) on (P.4) and selection (P.4) and	For the Max n MBH (KW @ s require TD) /	e model selection of Feeds 1° F TD per 1° C TD) 1° TO per 2° TO TD)	ed, refer to P.4	will closely	r match the er — (A) — (B)		
Refer to the R22 CA	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2	Heat of Rejection sing Temp - Amb pading per 1°F (*) on (P.4) and selection (P.4) and	For the Max n MBH (KW @ s require TD) /	e model selection of Feeds 1° F TD per 1° C TD) 1° TO per 2° TO TD)	ed, refer to P.4	will closely	r match the er — (A) — (B)		
Refer to the R22 CA	THR = Total HTD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3	Heat of Rejection sing Temp - Amb pading per 1°F (*) on (P.4) and selection (P.4) and	For the Max n MBH (KW @ s require TD) /	e model selection of Feeds 1° F TD per 1° C TD) 1° TO per 2° TO TD)	ed, refer to P.4	will closely	r match the er — (A) — (B)		
Refer to the R22 CA	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2	Heat of Rejection sing Temp - Amboading per 1°F (** In (P.4) and selection (P.4) and	For the Max n (KW © s require D)	enser at the 1°l e model selection of Feeds @ 1°F TD per @ 1°C TD) ed for each cir (B) value	ed, refer to P.4	will closely	r match the er — (A) — (B)		
Refer to the R22 CA	THR = Total HTD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3	Heat of Rejection sing Temp - Amboading per 1°F (** In (P4) and selection (P4) and selection (P4) and selection (MBH / 1°F T (KW / 1°C T) Total number	For the Max n (KW @ Is required D) / D) / of feeds	enser at the 1° e model selection of Feeds @ 1°FTD per @ 1°CTD) ed for each circ (B) value	ed, refer to P.4	will closely	r match the er — (A) — (B)		
Refer to the R22 CA	THR = Total HTD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3	Total number (must not except)	For the Max n MBH (KW @ S require TD) / D) of feeds ceed value	enser at the 1°l e model selection of Feeds 1°F TD per 1°C TD) ed for each cirr (B) value	ed, refer to P.4	will closely and ente	r match the er — (A) — (B) s required	(round off to	o nearest whole #)
Refer to the R22 CA	THR = Total HTD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3	Total number of fexical number	For the Max n MBH (KW @ Srequire TD) / D) of feeds ceed value feeds received to the max n	enser at the 1°l e model selection of Feeds 1°C TD) ed for each cir (B) value required NF ue (A)) quired exceeds	feed = ST number =	will closely and ente	match the er — (A) — (B) Is required	(round off to	o nearest whole #)
Refer to the R22 CA (MBH/ 1°F (KW/1°C	THR = Total HTD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3 CIRC#4	Total number of condenser me	For the Max n MBH (KW @ S require TD) / D) / of feeds ceed valuated a condel that	enser at the 1°l e model selection of Feeds 1°F TD per 1°C TD) ed for each cir (B) value required NF ue (A)) quired exceeds	feed = Some number of	will closely and ente	match the er — (A) — (B) Is required	(round off to	o nearest whole #)
Refer to the R22 CA (MBH/ 1°F (KW/1°C)	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3 CIRC#4 CI	Total number of feed (must not exclude from the condenser motor).	For the Max n MBH (KW @ CD) / DD) / DD) / DD / Code deed value feeds recoded that	enser at the 1°l e model selection of Feeds 1°F TD per 1°C TD) ed for each cir (B) value required NF ue (A)) quired exceeds can handle the	feed = Some number and in the set of the set	eds availa	match the er — (A) — (B) Is required ble then so ove proces	(round off to elect the nex ss.	o nearest whole #) It larger size
Refer to the R22 CA (MBH/ 1°F (KW/1°C	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3 CIRC#4 CI	Total number of feed (must not exclude from the condenser motor).	ct a conder to the conder to t	enser at the 1°I e model selection of Feeds in 1°F TO per in 1°C TD) ed for each cir (B) value required NF ue (A)) quired exceeds can handle the	feed = So number and so number	will closely and enter er of feed eds availa repeat ab	match the er — (A) — (B) Is required ble then so ove proces value (B)	(round off to elect the nex ss. AT = (Actual Te	o nearest whole #) It larger size Demperature Difference
Refer to the R22 CA (MBH/ 1°F (KW/1°C)	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3 CIRC#4 CIRC#1	Total number of feed (must not exclude from the condenser motor).	ct a conder to the conder to t	enser at the 1°I e model select no. of Feeds	red, refer to P. 4 feed = Cuft. = NF number = = = = = = = = = = = = = = = = = = =	eds availarepeat ab	match the er — (A) — (B) Is required ble then so ove proces value (B)	elect the next ss. AT = (Actual Te	o nearest whole #) It larger size Demperature Difference
Refer to the R22 CA (MBH/ 1°F (KW/1°C)	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3 CIRC#4	Total number of feed (must not exclude from the condenser motor).	ct a conder to the conder to t	enser at the 1°l e model select oo. of Feeds @ 1°F TD per @ 1°C TD) ed for each cir (B) value required NF ue (A)) quired exceeds can handle the	red, refer to P. 4 feed = Some some some some some some some some s	eds availarepeat ab	w match the er — (A) — (B) Is required ble then so ove proces value (B)	(round off to elect the nex ss. AT = (Actual Te	o nearest whole #) It larger size Demperature Difference
Refer to the R22 CA (MBH/ 1°F (KW/1°C)	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3 CIRC#4 CIRC#1	Total number of feed (must not exclude from the condenser motor).	ct a conder to the conder to t	enser at the 1°I e model select no. of Feeds	red, refer to P. 4 feed = Cuft. = NF number = = = = = = = = = = = = = = = = = = =	eds availarepeat ab	w match the er — (A) — (B) Is required ble then so ove proces value (B)	elect the next ss. AT = (Actual Te =	o nearest whole #) It larger size Demperature Difference
Refer to the R22 CA (MBH/ 1°F (KW/1°C)	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3 CIRC#4	Total number of feed (must not exclude from the condenser motor).	ct a conder to the conder to t	enser at the 1°I e model select no. of Feeds	red, refer to P. 4 feed = Cuft. = NF number = = = = = = = = = = = = = = = = = = =	eds availarepeat ab	w match the er — (A) — (B) Is required ble then so ove proces value (B)	elect the next ss. AT = (Actual Te =	o nearest whole #) It larger size Demperature Difference
Refer to the R22 CA (MBH/ 1°F (KW/1°C)	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3 CIRC#4	Total number (must not excelled in the condenser more condenser mo	For the Max n (KW © s required to code that the code that	enser at the 1°I e model selection of Feeds © 1°F TO per © 1°C TD) ed for each cirr (B) value required NF ue (A)) quired exceeds can handle the	red, refer to P. 4 feed = Cuft. = NF number = = = = = = = = = = = = = = = = = = =	eds availarepeat ab	w match the er — (A) — (B) Is required ble then so ove proces value (B)	elect the next ss. AT = (Actual Te =	o nearest whole #) It larger size Demperature Difference
Refer to the R22 CA (MBH/ 1°F (KW/1°C) 4. ACTUAL CONDEN First calculate the	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3 CIRC#4 SING TEMP (p ATD (Actual TE CIRC#2 CIRC#3 CIRC#4 densing Tempe ATD +	Total number of exerciser moders as follows: Total number of exerciser moders as follows: Total number of exerciser moders as follows: Arrature (ACT) just AT =	For the Max n (KW © Is required to code that the ACT	required NF ue (A)) quired exceeds can handle the	red, refer to P. 4 feed =	eds availarepeat ab	w match the er — (A) — (B) Is required ble then so ove proces value (B)	elect the next ss. AT = (Actual Te =	o nearest whole #) It larger size Demperature Difference
Refer to the R22 CA (MBH/ 1°F (KW/1°C) 4. ACTUAL CONDEN First calculate the	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC # 1 CIRC # 2 CIRC # 3 CIRC # 4 SING TEMP (p ATD (Actual TE CIRC # 2 CIRC # 3 CIRC # 4 densing Tempe ATD + CIRC # 1	Total number of condenser more circuit) CAL Total number of condenser more circuit (CAL) Total number of condenser more circuit (CAL) Total number of condenser more circuit (CAL)	For the Max n (MBH) For the Max n MBH (KW © s required to be coded to be coded that the ACT	required NF ue (A)) quired exceeds can handle the	refer to P. 4 feed =	eds availarepeat ab	w match the er — (A) — (B) Is required ble then so ove proces value (B)	elect the next ss. AT = (Actual Te =	o nearest whole #) It larger size Demperature Difference
Refer to the R22 CA (MBH/ 1°F (KW/1°C) 4. ACTUAL CONDEN First calculate the	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC # 1 CIRC # 2 CIRC # 3 CIRC # 4 SING TEMP (p ATD (Actual TD CIRC # 2 CIRC # 3 CIRC # 4 densing Tempe ATD + CIRC # 1 CIRC # 1 CIRC # 1 CIRC # 2 CIRC # 3 CIRC # 4	Total number of condenser more circuit) CAL Output Total number of condenser more circuit) CAL Total number of condenser more circuit (ACT) just AT = + + +	For the Max n (MBH) For the Max n MBH (KW © s required to be coded that the ACT	required NF ue (A)) quired exceeds can handle the ON THR (from sec	refer to P. 4 feed =	eds availarepeat ab	w match the er — (A) — (B) Is required ble then so ove proces value (B)	elect the next ss. AT = (Actual Te =	o nearest whole #) It larger size Demperature Difference
Refer to the R22 CA (MBH/ 1°F (KW/1°C) 4. ACTUAL CONDEN First calculate the	THR = Total H TD = Condens CL = Circuit lo CTION PACITY selection TD). COND. MODE calculate the CIRC#1 CIRC#2 CIRC#3 CIRC#4 CIRC#4 CIRC#4 CIRC#4 CIRC#4 CIRC#1 CIRC#2 CIRC#3 CIRC#4 densing Temper ATD + CIRC#1 CIRC#1 CIRC#1 CIRC#1 CIRC#2 CIRC#3 CIRC#1 CIRC#3 CIRC#4	Total number of condenser more circuit) CAL Total number of condenser more circuit (CAL) Total number of condenser more circuit (CAL) Total number of condenser more circuit (CAL)	For the Max n (MBH) For the Max n MBH (KW © s required to be coded that the Max n MBH (KW © s reduired to be coded that the Max n MBH (KW © s reduired to be coded that the MAX n MBH (KW © s reduired to be coded that the MAX n MBH (KW © s reduired to be coded that the MAX n MBH (KW © s reduired to be coded that the MAX n MBH (KW © s reduired to be coded that the MAX n MBH (KW © s reduired to be coded to be code	required NF ue (A)) quired exceeds can handle the ON THR (from sec	refer to P. 4 feed =	eds availarepeat ab	w match the er — (A) — (B) Is required ble then so ove proces value (B)	elect the next ss. AT = (Actual Te =	o nearest whole #) It larger size Demperature Difference

This ensures the compressor capacity is maintained when operating the condenser at the design ambient tremperature. For further assistance please contact your local TRENTON sales representative.

WORKSHEETS - SAMPLE SELECTION #1

(IMPERIAL UNITS)

Preliminary Data Given:

- 1. Evaporating temp = -20 °F
- 2. Condensing temp = 105 °F
- 3. Compressor capacity = 296,000 Btuh
- 4. Design ambient = 90 °F

Use WORKSHEET - SINGLE CIRCUIT (P 34) to complete selection of condenser

USE WORKSHEET - SINGLE CIRCUIT (P 34) to complete selection of condenser	
JOB REF:	TC 1500
1. SYSTEM DATA REQUIREMENTS	
EVAPTEMP =	
COMPR. CAPACITY= 296,000 Btuh / 1000 = 296 MBH	
COND. DESIGN AMBIENT TEMP= 90 (AT)°F TD= 15 (Cond	. Temp Ambient Temp)
COMPRESSOR TYPE=	
REFRIGERANT= R REF. FACTOR= 1 (see P. 4)	
ALTITUDE = ✓ AT SEA LEVEL orFEET ALT. FACTOR =1 (See P.4)	
2. THR (Total Heat of Rejection) CALCULATION	
COMPR. CAPACITY (MBH) X HR f X ALT f X REF f	= THR (MBH)
296	= 458 .8
3. CONDENSER MODEL SELECTION	
COND. MODEL # TVC064 (850 RPM) For the model selected	(D) (D ()
record the THR PER 19F TD value = 30.68	(B) (see P. 4)
4. ACTUAL CONDÉNSING TEMP CALCULATION	
THR (from sec. 2) / value (B) = ATD (actual Temperature Difference)	
458.8 / 30.68 = 14.95 °F	
To find the Actual Condensing Temp. (ACT) just add the Actual Temperature Difference (ATD)	
to the design Ambient Temperature (AT). ATD + AT = ACT	
<u>14.95</u> + <u>90</u> = <u>104.95</u> °F	

Above selection using condenser model TVC064 ensures condensing temperature will be at 105 °F or below during design ambient conditions. See SAMPLE SELECTION # 2 for multiple circuit selections.

WORKSHEETS - SAMPLE SELECTION # 2 (IMPERIAL UNITS)

Preliminary Data Given:

- 1. Location at Reno, Nevada, 95 °F design ambient and 4,000 feet elevation.
- 2. Multiple circuits required with evaporating temperatures, condensing temperatures, compressor capacities and refrigerant types as listed below.

Use WORKSHEET-MULTIPLE CIRCUITS (P. 35) to complete selection of condenser.

1. SYSTEM DATA REQUIREMENTS				JOBREF:	TC2000
CONDENSER DESIGNAMBIENTTE		(AT) °F			
ALTITUDE = SEA LEVEL	or 4,000	FEET	FACTOR =	1.14	
		(See P. 4) FORMATION		
	CIRC#1	CIRCUIT IN	CIRC#	3	IRC#4
OPEN		CINC#2	CINO#		110 # 4
HERMETIC		ightleftarrow			
EVAP. TEMP °F =	+20	+10			-20
CONDENSING TEMP=	110	110	105		105
COMPR CAP. (MBH) =	<u>13</u> 22	25	4.6 404 <i>A</i>		31.5 404A
REFRIGERANT = TD =	15	15	10		10
(Cond Temp - Amb.)					10
(Conditions / units)					
2. THR (Total Heat of Rejection)	CALCULATION				
COMPR CAPACITY (MBH)	X	HRf X	ALTf X R	EFf = THR (M	BH) /TD =CL
3173	13	1,33 x	1.14 ×	1 = 19.71	, 15 1 214
CIRC#1 CIRC#2	13	1.38 X	1.14 X 1.14 X	1 = 19.71	$\frac{1}{3}$ $\frac{15}{15} = \frac{1.314}{2.622}$
CIRC#2	4.6 X	1.48 ×		03 = 7.99	
CIRC#4	31.5 X	1.55 X		.03 = 57.33	$\frac{10}{10} = 5.733$
			TOTAL	THR Capacity (ME	$3H/1 \circ FTD) = 10.468$
					, in the second second
3. CONDENSER SELECTION Refer to the R22 CAPACITY (850)	DDM) coloation (D 4)	and coloct a	andonoor of the 10F T	'D that will alocaly	match the above Total
THR Capacity (MBH/ 1°F TD)		and select a C	indense at the 17F I	D that will closely	materi the above rotal
COND. MOD	EL# TVC024	For the	model selected, refe	er to P. 2 and enter	
		Max no	o. of Feeds =_	<u>22</u> (<i>F</i>	A)
			1°F TD per feed =_		3)
	number of feeds requi			f for all more during the	
CL (M)	BH/1°FTD) / 1.314 /	(B) value . 5264	= NF number of 2.49 (round off to nearest whole #)
CIRC#2	2.622	.5264	= 4.98 (
CIRC#3	.799	.5264	= 1.52 (
CIRC#4	5.733	.5264	= 10.89 (1		
					
	Total number of feed		=21	_	
	(must not exceed v			available these sel	
			the number and repo		ect the next larger size
	condense model in	at can nandic	the number and rep	cat above process	•
4. ACTUAL CONDENSING TEMP (per circuit) CALCULA	TION			
First calculate the ATD (Actual T	D) as follows; {TH	IR (from sec. 2	2) / NF value} / value	` ' `	ctual Temperature Difference)
CIRC#1	{	<u>3</u>	/5264	= 12.48	
CIRC#2	39.33 /	<u>5</u>	/ <u>.5264</u>	= 14.95	
CIRC#3 CIRC#4	{ 7.99 / — 57.33 /	12	/ <u>.5264</u> / <u>.5264</u>	= <u>7.60</u> = <u>9.10</u>	
CIRC#4	1/	}	/ <u>.525</u>		
To find the Actual Condensi	ng Temperature (ACT) in	ust add the Ac	tual Temperature Diff	erence (ATD) to the	ne design ambient (AT)
	5 1 (/)			, , , , ,	
	ATD + AT	= AC	T -		
	12.48 + <u>95</u>	= <u>107.</u>			
CIRC#2	14.95 + 95 7.6 + 95	= <u>109.</u> = 102.			
CIRC#3 _ CIRC#4 _	9.1 + 95		00_ ∓ 10_		
011.0 # 4 _			·		

GENERAL

When a remote air cooled condenser is installed outdoors, it will be subjected to varying temperatures. Within many areas, winter to summer annual temperatures swings can be as high as 120 °F (48.9 °C) or so, this will have a major impact on the performance of the condenser. As the ambient temperature drops, the condenser capacity increases due to the wider temperature difference between ambient and condensing. As this happens, the condensing temperature also drops as the system finds a new balance point. Although the overall system capacity will be higher at lower condensing temperatures, other problems can occur. The capacity of an expansion valve is affected by both the liquid temperature entering the valve and the pressure drop across it. As the condensing temperature decreases, the pressure drop across the metering device also decreases. lower pressure drop decreases the capacity of the valve. Although lower liquid temperatures increase the capacity of the metering device, the increase is not large enough to offset the loss due to the lower pressure drop.

The following three sections cover the various options used to control condensing temperatures.

(i) Fan Cycling

Cycling of the condenser fans helps control the condensing temperature. With this approach to solving low ambient problems, fans are taken off-line either one at a time, or in pairs. It is not recommended that multiple fan condensers cycle more than two fans per step. The reason for this is that the pressure in the condenser will increase drastically as several fans are taken off-line at the same time. This will result in erratic operation of the refrigeration system and applies additional stress to the condenser tubes. It is preferable to control the condensing temperature as smoothly as possible. Fans should be cycled independently on a condenser where the fans are all in a single row. On two row condensers, the fans should be cycled in pairs.

Ambient temperature sensing controls can be set to bring on certain fans when the outdoor temperature reaches a predetermined setpoint. Pressure sensing controls are set to bring on certain fans when the condensing pressure reaches the setpoint on the control. Temperature or pressure setpoints and differentials should be set in such a way as to prevent short cycling of the fans. Constant short cycling will produce a volatile condensing pressure while decreasing the life of the fan motors.

For recommended fan cycling switch settings, refer to Table 4. Differential settings on fan cycling temperature controls should be about 5 °F (2.8 °C). On fan cycling pressure controls, a differential of approximately 35 psig is recommended. On supermarket applications (using 6-12 Fan models) condenser fans may be cycled individually (not in pairs) and therefore lower differential settings may apply and will depend on the specific application.

Fans closest to the inlet header should be permitted to run whenever the compressor is running. If these initial fans are wired through a cycling control, the life of the condenser may be shortened due to the additional stress placed on the tubes and headers. Table 3 shows the fan cycling options available for all condenser models.

(ii) Variable Motor Speed Control

If additional head pressure control is required beyond the last step of fan cycling variable fan motor speed may be used. Variable motor speed is optional on all condenser models. A varying motor speed may be accomplished using a modulating temperature or modulating pressure control. A variable speed controller can be an electronic or solid state device which varies the voltage going to the motor depending on the temperature or pressure of the medium being sensed.

(iii) Refrigerant Regulating Controls

Pressure regulating controls are available from a number of valve manufacturers. The purpose of such a control is to regulate the refrigerant flow in such a way as to maintain a pre-selected condensing pressure. In lower ambient temperatures, these valves throttle to maintain the desired pressure and in doing so, flood the condenser with liquid refrigerant.

The larger the condenser surface is, the higher its capacity will be. When a condenser is flooded, its useful condensing surface is reduced. This is because the refrigerant occupies the space which would otherwise be used for condensing.

Some control/check valve combinations will regulate refrigerant flow depending on the pressure at the inlet of the condenser. These are often referred to as *inlet regulators*. As the valve closes, hot gas bypasses the condenser through a differential check valve to increase the pressure at the receiver.

This will flood the condenser until the condensing pressure increases to a point which will again open the valve. Other valves regulate the refrigerant at the outlet of the condenser to provide a similar effect. These are commonly referred to as *outlet regulators*. There are also combination inlet/outlet regulators with a differential check valve or other type of condenser bypass arrangement incorporated within the valve.

Controls which regulate the flow of refrigerant based on condenser inlet pressure are typically used in conjuction with a check valve having a minimum opening differential across the condenser. Outlet regulators typically require a check valve with a fixed pressure differential setting of between 20 and 35 psi. The differential is needed to compensate for pressure drop through the condenser during flooding and associated discharge piping.

Systems equipped with a condenser flooding arrangement should always use a receiver having sufficient liquid holding capacity. Additional liquid required for flooding is only required during the winter low ambients and must be stored somewhere in the system at the higher ambients. Failure to use an adequately sized receiver will result in liquid back-up in the condenser during the warmer summer months. This will cause the system to develop very high pressures in the high side resulting in a high pressure safety control trip.

Determining Additional Flooded Refrigerant Charge

Additional charge will vary with the condenser design TD and the coldest expected ambient temperature. Condensers designed for low TD applications (low temperature evaporators) and operating in colder ambients will require more additional charge than those designed for higher TD applications (high temperature evaporators) and warmer ambients.

Refer to Table 5 to determine the required added refrigerant charge at the selected TD and ambient temperatures.

These charges are based on condensers using Fan Cycling options with their last fan (Single Row Fan Models) running or last pair of fans running (Double Row Fan models).

WARNING: Do not over charge when charging by a sightglass. Liquid lines feeding the TXV at the evaporator must have a solid column of liquid (no bubbles) however bubbles at the sightglass (located adjacient to the receiver) may be normal due to the result of a higher pressure drop at that point. Bubbles could also appear in the glass whenever the regulating valves start to flood the condenser. Always record the number of drums or the weight of refrigerant that has been added or removed in the system. Overcharged systems may result in compressor failure as well as other serious mechanical damage to the system components.

TABLE 3 - FAN CYCLING CONTROL SCHEDULE

FAN ARR	RANGEMENT	FANS	FANS IN CONSTANT	FANS AVAILABLE FOR VARIABLE				
SINGLE ROW	DOUBLE ROW	CYCLED	OPERATION	SPEED CONTROL				
	4 FAN (FAN 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	■ 1 STAGE	•	•				
	6 FAN (FAN) (FAN) (FAN) (FAN) (FAN) (FAN) (FAN) (FAN) (FAN) (FAN)	2'ND STAGE	•	•				
4 FAN (FAN) (F	8 FAN (FAN	→ 3'RD STAGE → 2'ND STAGE → 1'ST STAGE						

TABLE 4 - AMBIENT FAN CYCLING THERMOSTAT SETTINGS

Number o	f Fonc on						
Conde		Design		Therm	nostat Setting * °F (°C)	
Single Row Models	Double Row Models	T.D. °F (°C)	1st Stage	2nd Stage	3rd Stage	4th Stage	5th Stage
2	4	30 (16.7) 25 (13.9) 20 (11.1) 15 (8.3) 10 (5.6)	60 (15.6) 65 (18.3) 70 (21.1) 75 (23.9) 80 (26.7)				
3		30 (16,7) 25 (13.9) 20 (11.1) 15 (8.3) 10 (5.6)	60 (15.6) 65 (18.3) 70 (21.1) 75 (23.9) 80 (26.7)	40 (4.4) 55 (12.8) 60 (15.6) 65 (18.3) 75 (23.9)			
4	8	30 (16.7) 25 (13.9) 20 (11.4) 15 (8.3) 10 (5.6)	60 (15.6) 65 (18.3) 70 (21.1) 75 (23.9) 80 (26.7)	50 (10.0) 55 (12.8) 65 (18.3) 70 (21.1) 75 (23.9)	30 (-1.1) 40 (4.4) 50 (10.0) 60 (15.6) 70 (21.1)		
5	10	30 (16.7) 25 (13.9) 20 (11.1) 15 (8.3) 10 (5.6)	60 (15.6) 65 (18.3) 70 (21.1) 75 (23.9) 80 (26.7)	55 (12.8) 60 (15.6) 65 (18.3) 70 (21.1) 75 (23.9)	45 (7.2) 50 (10.0) 60 (15.6) 65 (18.3) 70 (21.1)	30 (-1.1) 35 (1.7) 40 (4.4) 55 (12.8) 65 (18.3)	
6	12	30 (16.7) 25 (13.9) 20 (11.1) 15 (8.3) 10 (5.6)	55 (12.8) 65 (18.3) 70 (21.1) 75 (23.9) 80 (26.7)	50 (10.0) 60 (15.6) 65 (18.3) 70 (21.1) 75 (23.9)	40 (4.4) 55 (12.8) 60 (15.6) 65 (18.3) 70 (21.1)	30 (-1.1) 45 (7.2) 50 (10.0) 60 (15.6) 65 (18.3)	25 (-3.9) 35 (1.7) 40 (4.4) 50 (10.0) 60 (15.6)

^{*} NOTE: These are typical settings. Further adjustments may be necessary to suit actual field conditions.

TO DETERMINE WINTER CHARGE, ADD THE SUM OF THE NORMAL CHARGE AND ADDITIONAL WINTER CHARGE

TABLE 5
R22 WINTER OPERATION CHARGE - Lbs • Deg °F
Flooded Condensers with Fan Cycling

			Additional Winter Charge (lbs.)																		
Model	Summer Charge	Design TD = 25					Design TD = 20					Design TD = 15					Design TD = 10				
Wodei			Aı	mbient	t °F			Α	mbien	t °F			Α	mbien	t °F		Ambient °F				
	lbs.	40	20	0	-20	-40	40	20	0	-20	-40	40	20	0	-20	-40	40	20	0	-20	-40
TVC056	26	0	0	26	45	56	0	14	43	57	66	3.1	46	62	71	79	/51	69	80	88	94
TVC063	33	0	0	33	56	70	0	17	54	71	82	3.9	58	77	89	98	64	87	100	110	117
TVC068	39	0	0	40	68	84	0	21	65	85	99	4.7	69	93	107	118	77	104	121	132	141
TVC079	39	0	0	22	60	79	0	0	52	78	94	0	54	85	102	114	65	99	117	129	139
TVC085	51	0	0	29	77	101	0	0	68	101	121	0	69	109	132	147	84	127	151	167	179
TVC095	53	0	0	0	66	97	0	0	50	96	120	0	44	103	131	149	66	125	153	171	184
TVC103	63	0	0	0	78	115	0	0	59	114	143	0	52	122	155	176	78	148	181	202	219
TVC044	16	0	18	28	34	39	8	26	34	40	44	24	35	42	47	50	37	46	51	55	58
TVC049	19	0	21	34	42	47	10	32	42	48	53	29	43	51	57	61	45	55	62	67	71
TVC054	23	0	25	40	49	56	12	37	49	57	63	35	51	60	67	72	54	65	73	79	84
TVC057	25	0	28	44	54	61	13	41	54	63	69	38	56	66	73	79	59	72	80	87	92
TVC064	29	0	32	52	63	72	16	48	64	74	81	45	66	78	86	93	69	84	94	102	108
TVC073	28	0	9	40	54	64	9	35	54	66	74	30	57	70	79	86	61	77	88	95	101
TVC081	33	0	10	48	65	76	0	41	65	79	89	37	68	84	95	103	73	93	105	114	121
TVC086	34	0	10	48	66 _	77	0	42	66	80	90	37	69	85	96	105	73	94	106	116	123
TVC096	40	0	12	57	78	92	0	50	78	95	107	44	82	102	115	125	88	112	127	138	147
TVC112	52	0	0	53	90	111	٥	28	86	114	132	6.2	92	123	143	157	102	139	160	176	188
TVC126	65	0	0	66	112	140	6	35	108	142	165	7.8	115	154	179	197	127	174	201	220	235
TVC137	79	0	0	80	135	168	0	42	130	171	198	9.4	138	186	215	236	153	209	241	264	282
TVC158	78	0	0	45	119	157	0	0	105	157	188	0	107	169	204	228	130	197	234	258	277
TVC172	101	0	0	58	154	203	0	0	135	202	242	0	138	219	263	294	167	255	301	333	358
TVC190	106	0	0	0	131	195	0	0	100	192	241	0	88	206	261	298	131	250	305	341	369
TVC206	126	0	0	0	156	231	0	0	119	227	285	0	104	244	310	353	156	296	362	405	437

Note: For R134a and R502 use R22 charge For R404A and R507 use R22 charge x 0.87 For R407C use R22 charge x 0.97 For R12 use R22 charge x 1.10 For 90% full volume charge see P. 8 & 9.

TO DETERMINE WINTER CHARGE, ADD THE SUM OF THE NORMAL CHARGE AND ADDITIONAL WINTER CHARGE

TABLE 5A R22 WINTER OPERATION CHARGE - Kg • Deg °C Flooded Condensers with Fan Cycling

			Additional Winter Charge (Kg.)																		
	Summer	Design TD =13.9					Design TD =11.1 Design TD = 8.3								Design TD =5.60						
Model	Charge		Ar	nbient	°C			Ambient °C				Ambient °C					Ambient °C				
	Kg	40	20	0	-20	-40	40	20	0	-20	-40	40	20	0	-20	-40	40	20	0	-20	-40
TVC056	11.9	0.0	0.0	12.0	20.4	25.3	0.0	6.3	19.6	25.8	29.9	1.4	20.9	28.0	32.5	35.7	23.1	31.5	36.4	39.9	42.6
TVC063	14.9	0.0	0.0	15.1	25.6	31.7	0.0	7.9	24.6	32.3	37.4	1.8	26.2	35.1	40.7	44.7	29.0	39.5	45.6	50.0	53.4
TVC068	17.9	0.0	0.0	18.1	30.7	38.1	0.0	9.5	29.5	38.8	45.0	2.1	31.5	42.2	48.9	53.7	34.8	47.4	54.8	60.0	64.1
TVC079	17.8	0.0	0.0	10.2	27.1	35.8	0.0	0.0	23.8	35.6	42.7	0.0	24.4	38.5	46.4	51.8	29.5	44.9	53.1	58.7	63.0
TVC085	23.0	0.0	0.0	13.2	35.0	46.1	0.0	0.0	30.7	45.9	55.0	0.0	31.4	4 9.7	59.8	66.9	38.0	57.9	68.5	75.7	81.3
TVC095	24.1	0.0	0.0	0.0	29.8	44.3	0.0	0.0	22.8	43.6	54.7	0.0	19.9	46.9	59.4	67.7	29.8	56.8	69.3	77.6	83.8
TVC103	28.5	0.0	0.0	0.0	35.4	52.5	0.0	0.0	27.0	51.7	64.8	0.0	23.6	55.6	70.4	80.2	35.4	67.4	82.2	92.0	99.3
TVC044	7.2	0.0	8.0	12.7	15.6	17.6	3.8	11.9	15.6	18.1	19.9	11.0	16.1	19.1	21.2	22.8	16.9	20.7	23.1	25.0	26.5
TVC049	8.7	0.0	9.7	15.5	18.9	21.4	4.7	14.5	19.0	22.0	24.2	13.4	19.6	23.2	25.8	27.8	20.6	25.2	28.2	30.4	32.2
TVC054	10.3	0.0	11.4	18.2	22.3	25.3	5.5	17.0	22.4	25.9	28.6	15.8	23.1	27.3	30.4	32.7	24.3	29.7	33.2	35.9	38.0
TVC057	11.3	0.0	12.5	20.0	24.5	27.7	6.0	18.7	24.6	28.5	31.4	77.3	25.3	30.0	33.3	35.9	26.7	32.6	36.5	39.4	41.7
TVC064	13.3	0.0	14.7	23.5	28.8	32.6	7.1	22.0	28.9	33.5	36.9	20.4	29.8	35.3	39.2	42.2	31.4	38.3	42.9	46.3	49.0
TVC073	12.7	0.0	3.9	18.1	24.7	29.0	0.0	15.7	24.7	29.9	33.6	13.9	25.9	32.0	36.1	39.3	27.5	35.1	39.9	43.3	46.1
TVC081	15.2	0.0	4.6	21.6	29.5	34.7	0.0	18.8	29.5	35.8	40.3	16.6	31.0	38.3	43.3	47.0	33.0	42.1	47.8	51.9	55.2
TVC086	15.4	0.0	4.7	21.9	29.9	35.2	0.0	19.0	29.9	36.3	40.8	16.8	31.4	38.8	43.8	47.6	33.4	42.6	48.4	52.6	55.9
TVC096	18.3	0.0	5.6	26.1	35.6	41.9	0.0	22.7	35.6	43.2	48.6	20.0	37.4	46.3	52.3	56.8	39.8	50.8	57.7	62.7	66.6
TVC112	23.8	0.0	0.0	24.1	40.9	50.7	0.0	12.7	39.3	51.7	59.8	2.8	41.8	56.1	65.0	71.5	46.3	63.1	72.9	79.9	85.3
TVC126	29.7	0.0	0.0	30.1	51.1	63.4	0.0	15.9	49.2	64.7	74.9	3.6	52.4	70.2	81.4	89.5	57.9	78.9	91.2	100.0	106.7
TVC137	35.7	0.0	0.0	36.2	61.4	76.2	0.0	19.0	59.1	77.7	89.9	4.3	62.9	84.3	97.7	107.5	69.5	94.8	109.6	120.1	128.2
TVC158	35.6	0.0	0.0	20.4	54.3	71.5	0.0	0.0	47.7	71.2	85.3	0.0	48.8	77.0	92.7	103.7	58.9	89.7	106.2	117.5	126.1
TVC172	46.0	0.0	0.0	26.3	70.0	92.2	0.0	0.0	61.5	91.8	110.1	0.0	62.9	99.3	119.6	133.7	76.0	115.7	136.9	151.5	162.6
TVC190	48.1	0.0	0.0	0.0	59.7	88.5	0.0	0.0	45.6	87.2	109.3	0.0	39.8	93.7	118.8	135.3	59.7	113.6	138.7	155.2	167.6
TVC206	57.1	0.0	0.0	0.0	70.8	105.0	0.0	0.0	54.0	103.3	129.6	0.0	47.2	111.1	140.8	160.4	70.8	134.7	164.4	184.0	198.6

Note: For R134a and R502 use R22 charge For R404A and R507 use R22 charge x 0.87 For R407C use R22 charge x 0.97 For R12 use R22 charge x 1.10 For 90% full volume charge see P. 8 & 9

INSTALLATION

INSPECTION

A thorough inspection of the equipment, including all component parts and accessories, should be made immediately upon delivery. Any damage caused in transit, or missing parts, should be reported to the carrier at once. The consignee is responsible for making any claim for losses or damage. Electrical characteristics should also be checked at this time to ensure that they are correct.

LOCATION

Before handling and placing the unit into position a review of the most suitable location must be made. This condenser is designed for outdoor installation.

A number of factors must be taken into consideration

when selecting a location. Most important is the provision for a supply of ambient air to the condenser, and removal of heated air from the condenser area.

Higher condensing temperatures, decreased performance, and the possibility of equipment failure may result from inadequate air supply.

Other considerations include:

- 1. Customer requests
- 2. Loading capacity of the roof or floor.
- 3. Distance to suitable electrical supply.
- 4. Accessibility for maintenance.
- 5. Local building codes.
- 6. Adjacent buildings relative to noise levels.

WALLS OR OBSTRUCTIONS

All sides of the unit must be a minimum of **4 feet** (1.25 m) away from any wall or obstruction. Overhead obstructions are not permitted. If enclosed by three walls, the condenser must be installed as indicated for units in a pit.

MULTIPLE UNITS

A minimum of **8 feet** (2.5 m) is required between multiple units placed side by side. If placed end to end, the minimum distance between units is **4 feet** (1.25 m).

UNITS IN PITS

The top of the condenser <u>must be level</u> with, or <u>above</u> the top of the pit. In addition, a minimum of **8 feet** (2.5 m) is required between the unit and the pit walls.

LOUVERS/FENCES

Louvers/fences must have a minimum of 80% free area and 4 feet (1.25 m) minimum clearance between the unit and louvers/fence. Height of louver/fence must not exceed top of unit.

PLACEMENT

Once a suitable location is selected ensure all the remote mounting parts (legs and hardware) are available. Refer to Fig.1 (P. 44) and the dimensional data for the leg mounting locations. On 8, 10 and 12 fan models a **66-1/8**" (1680 mm)

channel is also included for maximum support. Single row 4, 5 and 6 fan models use a **23**" (600 mm) channel.

INSTALLATION

LEG INSTALLATION INSTRUCTIONS

- 1) Assemble center leg and centre channel as shown.
 Remove 2 bolts from bottom flange of unit side panels that match the hole pattern on the top flanges of both legs. Attach center leg and channel assembly using hardware provided at divider panel locations required for applicable model as shown in dimensional data.
 Replace bolts that were removed from side panels to secure leg assembly to bottom flanges of side panels.
- 2) Assemble four corner legs to bottom flanges on unit side panels and end panels using hardware provided, at matching mounting hole patterns. All corner legs are the same.

Air cooled condensers are large, heavy mechanical equipment and must be handled as such. A fully qualified and properly equipped crew with necessary rigging should be engaged to set the condenser into position.

Lifting brackets or holes have been provided at the corners for attaching lifting slings. Spreader bars must be used when lifting so that the lifting force must be applied vertically. See Fig. 2. **Under no circumstances should the coil headers or return bends be used in lifting or moving the condenser.**

Ensure the unit is placed in a level position (to ensure proper drainage of liquid refrigerant and oil). The legs should be securely anchored to the building structure, sleeper or concrete pad. The weight of the condenser is not enough to hold in place during a strong wind, the legs must be anchored.

REFRIGERANT PIPING

All refrigeration piping must be installed by a qualified refrigeration mechanic. The importance of correct refrigerant pipe sizing and layout cannot be overemphasized. Failure to observe proper refrigerant piping practices can result in equipment failure which may not be covered under warranty.

All air cooled condensers are supplied complete with headers and refrigerant connections sized for connecting

to standard refrigeration tubing. These connections may not be the same as the actual line sizes required for the field installation. Refer to a recognized source (ASHRAE charts, manufacturer's engineering manuals etc.) for line sizing.

DISCHARGE LINES

The proper design of discharge lines involves following objective:

(1) to minimize refrigerant pressure drop, since high pressure losses increase the required compressor horsepower per ton of refrigeration.

Discharge lines must be pitched away from the compressor to ensure proper drainage of oil being carried in the line. A discharge check-valve at the bottom of a vertical riser will prevent oil (and liquid refrigerant) from draining back to the compressor during the off-cycle. When the vertical lift exceeds 30 feet (9 m), insert close-coupled traps in the riser at 30 feet (9 m) intervals.

An alternate method of handling the oil problem would be the addition of an oil separator see Figure 4 (b).

A reverse trap should be installed at the top of all vertical risers. The top of the reverse trap should be the highest point in the discharge line and should have an access valve installed to allow the reclaimation of non-condensible gas from the system.

Pulsation of the hot gas in the discharge line is an inherent characteristic of systems utilizing reciprocating compressors. The discharge line must be rigidly supported along its entire length to prevent transmission of vibration and movement of the line.

CONDENSATE LINES

The condensate line must be designed to allow free drainage of refrigerant from the condenser coil to the receiver. Refer to Fig. 5 for typical condensate line piping when utilizing head pressure regulating valves.

INSTALLATION

Fig. 3 - 6

TVC TYPICAL SYSTEM PIPING

ELECTRICAL WIRING

All wiring and connections to the air cooled condenser must be made in accordance with the National Electrical Code and all local codes and regulations. Any wiring diagrams shown are basic and do not necessarily include electrical components which must be field supplied. (see pages 13-17 for typical wiring diagrams). Refer to the Electrical Specifications table on pages 10, 24 and 31 for voltage availability and entering service requirements.

SYSTEM START-UP CHECKS

- 1. Check the electrical characteristics of all components to be sure they agree with the power supply.
- 2. Check tightness of all fans and motor mounts.
- 3. Check tightness of all electrical connections.
- 4. Upon start-up, check fans for correct rotation. Air is drawn through the condenser coil. To change rotation on 3 phase units reverse any two (2) fan motor leads.
- 5. All system piping must be thoroughly leak checked before a refrigerant charge is introduced.

MAINTENANCE

A semi annual inspection should be carried out by a qualified refrigeration service mechanic. The main power supply must be disconnected.

- 1. Check electrical components. Tighten any loose connections.
- Check control capillary tubes and lines for signs of wear due to excessive vibration or rubbing on metal parts. Secure if necessary.
- Check tightness of all fans and motor mounts. Remove any deposits which could effect fan balance. Note: Fan motors are permanently lubricated and require only visual inspection.
- 4. Clean the condenser coil using a soft brush or by flushing with cool water or coil cleansers available through NRP (National Refrigeration Products Inc.)
- 5. Update service log information (back page of service manual)

SERVICE PARTS LIST

PART DESCRIPTION	MODELS	PART NUMBER
FAN MOTORS-60 Hz *		
850 RPM Models		
208/230-1-60	850 RPM (3/4 HP)	1048725-001
208/230/460 -3-60	850 RPM (1 HP)	1079828-001
575-3-60	850 RPM (1 HP)	1089453-001
550 RPM Models		
208/230/460 -3-60	550 RPM (1/2 HP)	1068176-001
575-3-60	550 RPM (1/2 HP)	1068177-001
1140 RPM Models		
208/230/460 -3-60	1140 RPM (2 HP)	1079830-001
575-3-60	1140 RPM (2 HP)	1079831-001
MOTOR MOUNT RAIL (2 REQ'D)	ALL	1071666
MOTOR RAIN SHIELD*	ALL	1043295
MOTOR RAIN SLINGER*	ALL	106098
FAN BLADES		
30" 22° 4 BLADE	044,049,054,073,081	1077801
30" 28° 4 BLADE	056,063,068,079,085,095,103 057,064,086,096,112,126,	1077802
FAN GUARD - 35" DIA.	ALL	1048603
MOUNTING LEGS 20" LEGS 36" LEGS 48" LEGS CROSS CHANNEL-SINGLE FAN WIDE CROSS CHANNEL-DOUBLE FAN WIDE 45° CROSS BRACE FOR 36" AND 48"	ALL ALL ALL ALL ALL	1073085 1071668 1071669 1075076 1075077 1075078

^{*} Fan motor service kit part number with - 001 suffix includes a rain shield and slinger.

FINISHED GOODS WARRANTY

The terms and conditions as described below in the General Warranty Policy cover all products manufactured by National Refrigeration.

GENERAL WARRANTY POLICY

Subject to the terms and conditions hereof, the Company warrants all Products, including Service Parts, manufactured by the Company to be free of defects in material or workmanship, under normal use and application for a period of one (1) year from the original date of installation, or eighteen (18) months from the date of shipment from the Company, whichever occurs first. Any replacement part(s) so supplied will be warranted for the balance of the product's original warranty. The part(s) to be replaced must be made available in exchange for the replacement part(s) and reasonable proof of the original installation date of the product must be presented in order to establish the effective date of the warranty, failing which, the effective date will be based upon the date of manufacture plus thirty (30) days. Any labour, material, refrigerant, transportation, freight or other charges incurred in connection with the performance of this warranty will be the responsibility of the owner at the current rates and prices then in effect. This warranty may be transferred to a subsequent owner of the product.

THIS WARRANTY DOES NOT COVER

(a) Damages caused by accident, abuse, negligence, misuse, riot, fire, flood, or Acts of God (b) damages caused by operating the product in a corrosive atmosphere (c) damages caused by any unauthorized alteration or repair of the system affecting the product's reliability or performance (d) damages caused by improper matching or application of the product or the product's components (e) damages caused by failing to provide routine and proper maintenance or service to the product (f) expenses incurred for the erecting, disconnecting, or dismantling the product (g) parts used in connection with normal maintenance, such as filters or belts (h) products no longer at the site of the original installation (i) products installed or operated other than in accordance with the printed instructions, with the local installation or building codes and with good trade practices (j) products lost or stolen.

No one is authorized to change this WARRANTY or to create for or on behalf of the Company any other obligation or liability in connection with the Product(s). There is no other representation, warranty or condition in any respect, expressed or implied, made by or binding upon the Company other than the above or as provided by provincial or state law and which cannot be limited or excluded by such law, nor will we be liable in any way for incidental, consequential, or special damages however caused.

The provisions of this additional written warranty are in addition to and not a modification of or subtraction from the statutory warranties and other rights and remedies provided by Federal, Provincial or State laws.

PROJECT INFORMATION

System	
Model Number	Date of Start-Up
Serial Number	Service Contractor
Refrigerant	Phone
Electrical Supply	Fax

SERVICE PARTS LIST

NATIONAL REFRIGERATION & AIR CONDITIONING CANADA CORP.

159 Roy Blvd., Brantford, Ontario, Canada N3R 7K1 Phone (519) 751-0444 • Fax (519) 753-1140

